ORIGINAL ARTICLE
Use of Trichoderma hamatum for biocontrol of lentil vascular wilt disease: efficacy, mechanisms of interaction and future prospects
More details
Hide details
1
School of Agriculture, Policy and Development, University of Reading
Earley Gate, Whiteknights Road, Reading, Berkshire RG6 6AR, UK
Submission date: 2012-06-21
Acceptance date: 2012-08-30
Corresponding author
Saïd A. El-Hassan
School of Agriculture, Policy and Development, University of Reading
Earley Gate, Whiteknights Road, Reading, Berkshire RG6 6AR, UK
Journal of Plant Protection Research 2013;53(1):12-26
KEYWORDS
TOPICS
ABSTRACT
Trichoderma hamatum (Bonord.) Bainier was evaluated for its antagonistic potential against Fusarium oxysporum Schlecht. emend. Snyder and Hansen sp. lentis, the causal agent of vascular wilt disease of lentil (Lens culinaris Medikus). Hyphal interactions on Petri plates resulted in an increase in the number of conidial spores and an increase in the vegetative growth of T. hamatum, and a decrease in the hyphal formation and sporulation of F. oxysporum f. sp. lentis. Electron and light microscopical observations suggested that hyphae of T. hamatum established aggressive contact and attachment with the hyphae of the pathogen. Growing in parallel, coiled densely and tightly, T. hamatum may penetrate those of the pathogen hyphae causing collapse due to the loss of turgor pressure. The cellulolytic enzymes produced by T. hamatum presented sufficient characteristics for its antifungal activity in the hyphae hydrolysis and
competition process. In growth room and glasshouse experiments, the addition of the conidial suspension of T. hamatum or its culture filtrate to soil, significantly (p ≤ 0.05) reduced development and spore germination of F. oxysporum. In the rhizosphere, T. hamatum occupied the same ecological niches (rhizosphere, roots, and stems) parasitizing F. oxysporum f. sp. lentis. Treatments using T. hamatum delayed the time of infection by F. oxysporum, promoted the growth, and increased the dry weight of a susceptible variety of lentil (cv. Precoz). The percent of mortality was reduced to 33 and 40% when using T. hamatum and its filtrate, respectively, compared to 93% in the control treatment during the 65 days of growing in loam/sand (2:1 vol/vol) under glasshouse conditions. Plant colonization results indicate that T. hamatum and its filtrate significantly (p ≤ 0.05) reduced development of the pathogen in the vascular tissue of lentil to < 30 and < 40% stem colonization, respectively, compared to 100% in the plant pathogen control. Our results suggest that potential biocontrol mechanisms of T. hamatum towards F. oxysporum f. sp. lentis were antibiosis by production of antifungal enzymes, complex mechanisms of mycoparasitism, competition for key nutrients and/or ecological niches, growth promotion, and a combination of these
effects. This study results hold important suggestions for further development of effective strategies of the biological control of Fusarium vascular wilt of lentil.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (53)
1.
Andrabi M., Vaid A., Razdan V.K. 2011. Evaluation of different measures to control wilt causing pathogens in chickpea. J. Plant Prot. Res. 51 (1 ): 55–59.
2.
Askew D.J., Laing M.D. 1993. An adapted selective medium for the quantitative isolation of Trichoderma species. Plant Pathol. 42 (5): 686–690.
3.
Bailey B.A., Bae H., Strem M.D., Crozier J., Thomas S.E., Samuels G.J., Vinyard B.T., Holmes K.A. 2008. Antibiosis, mycoparatism and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol. Control 46 (1): 24–35.
4.
Baker R., Paulitz T.C. 1996. Theoretical basis of microbial interactions leading to biological control of soil-borne plant pathogens. p. 50–79, In: ‘’Principles and Practice of Managing Soil-borne Plant Pathogens’’ (R. Hall, ed.). APS Press, St. Paul, MN, USA, 342 pp.
5.
Bastos C.N. 1996. Mycoparasitic nature of the antagonism between Trichoderma viridi and Crinipellis perniciosa. Fitopatol. Bras. 21 (1): 50–54.
6.
Bayaa B., Erskine W. 1990. A screening technique for resistance to vascular wilt in lentil. Arab J. Plant Prot. 8 (1): 30–33.
7.
Bayaa B., Erskine W. 1998. Lentil pathology. p. 422-471. In: ‘’The Pathology of Food and Pasture Legumes’’ (D. Allen, J. Lenné, eds.). Commonwealth Agricultural Bureaux International, Slough, Berkshire, UK, 768 pp.
8.
Bayaa B., Erskine W., Khoury L. 1986. Survey of wilt damage on lentil in Northern Syria. Arab J. Plant Prot. 4 (2): 118–119.
9.
Benhamou N., Lafontaine P.J., Nicole M. 1994. Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology 84 (12): 1432–1444.
10.
Benhamou N., Rey P., Picard K., Tirilly Y. 1999. Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology 89 (6): 506–517.
11.
Bennett A.J., Whipps J.M. 2008. Beneficial microorganism survival on seed, roots and in rhizosphere soil following application to seed during drum priming. Biol. Control 44 (3): 349–361.
12.
Berg G., Zachow C., Lottmann J., Gotz M., Costa R., Smalla K. 2005. Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl. Environ. Microbiol. 71 (8): 4203–4213.
13.
Brozová J. 2004. Mycoparasitic fungi Trichoderma spp. in plant protection. Plant Prot. Sci. 40 (2): 63–74.
14.
Cook R.J., Baker K.F. 1983. The Nature and Practice of Biological Control of Plant Pathogens. APS Press, St. Paul, Minnesota, USA, 539 pp.
15.
De Castro A.M., Ferreira M.C., Da Cruz J.C., Pedro K.C.N.R., Carvalho D.F., Leite S.G.F., Pereira Jr N. 2010. High-yield endoglucanase production by Trichoderma harzianum IOC-3844 cultivated in pretreated sugarcane mill byproduct. Enzyme Res. 1 (1): 1–8.
16.
Dickinson J.M., Hanson J.R., Truneh A. 1995. Metabolites of some biological control agents. Pestic. Sci. 44 (4): 389–393.
17.
El-Hassan S.A. 2004. Biological control of vascular wilt of lentil (Fusarium oxysporum f. sp. lentis) by Bacillus subtilis and Trichoderma hamatum. PhD thesis, The University of Reading, Berkshire, UK, 220 pp.
18.
El-Hassan S.A., Gowen S.R. 2006. Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis. J. Phytopathol. 154 (3): 148–155.
19.
El-Katatny M.H., Gudelj M., Robra K.H., Elnaghy M.A., Gübitz G.M. 2001. Characterization of a chitinase and an endo-ß-1, 3-glucanase from Trichoderma harzianum Rifai T24 involved in control of the phytopathogen Sclerotium rolfsii. Appl. Microbiol. Biotechnol. 56 (1): 137–143.
20.
Elad Y. 2000. Trichoderma harzianum T39 preparation for biocontrol of plant diseases-control of Botrytis cinerea, Sclerotinia sclerotiorum and Cladosporium fulvum. Biocontrol Sci. Technol. 10 (4): 499–507.
21.
Erskine W., Bayaa B. 1996. Yield loss, incidence and inoculum density associated with vascular wilt of lentil. Phytopathol. Mediterr. 35 (1): 24–32.
22.
Erskine W., Muehlbauer F., Sarker A., Sharma B. 2009. The Lentil: Botany, Production and Uses. CAB International, Wallingford, UK, 457 pp.
23.
Eziashi E.I., Uma N.U., Adekunle A.A., Airede C.E. 2006. Effect of metabolites produced by Trichoderma species against Ceratocystis paradoxa in culture medium. African J. Biotechnol. 5 (9): 703–706.
24.
Haran S., Schickler H., Chet I. 1996. Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology 142 (9): 2321–1331.
25.
Harman G.E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96 (2): 190–194.
26.
Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. 2004. Trichoderma species opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2 (1): 43–56.
27.
Hohmann P., Jones E.E., Hilla R.A., Stewart A. 2011. Understanding Trichoderma in the root system of Pinus radiata: associations between rhizosphere colonisation and growth promotion for commercially grown seedlings. Fungal Biol. 115 (8): 759–767.
28.
Horst L.E., Locke J., Krause C.R., McMahon R.W., Madden L.V., Hoitink H.A.J. 2005. Suppression of Botrytis blight of begonia by Trichoderma hamatum 382 in peat and compostamended potting mixes. Plant Dis. 89 (11): 1195–1200.
29.
Howell C.R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis. 87 (1): 4–10.
30.
Khan J., Ooka J.J., Miller S.A., Madden L.V., Hoitink H.A.J. 2004. Systemic resistance induced by Trichoderma hamatum 383 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis. 88 (3): 280–286.
31.
Komada H. 1975. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev. Plant Prot. Res. 8 (2): 114–125.
32.
Kovács K., Szakács G., Zacchi G. 2009. Enzymatic hydrolysis and simultaneous saccharification and fermentation of steam-pretreated spruce using crude Trichoderma reesei and Trichoderma atroviride enzymes. Process Biochem. 44 (12): 1323–1329.
33.
Lorito M. 1998. Chitinolytic enzymes and their genes. p. 73-99. In: ‘’Trichoderma and Gliocladium, volume 2’’ (G. E. Harman, C. P. Kubicek, eds.). Taylor and Francis Ltd., London, UK, 440 pp.
34.
Lorito M., Peterbauer C., Hayes C.K., Harman G.E. 1994. Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology 140 (3): 623–629.
35.
Lu Z., Tombolini R., Woo S., Zeilinger S., Lorito M., Jansson J.K. 2004. In vivo study of Trichoderma-pathogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems. Appl. Environ. Microbiol. 70 (5): 3073–3081.
36.
Metcalf D.A., Wilson C.R. 2001. The process of antagonism of Sclerotium cepivorum in white rot affected onion roots by Trichoderma koningii. Plant Pathol. 50 (2): 249–257.
37.
Mycock D.J., Berjak P. 1991. In defense of aldehyde osmium fixation and critical point drying for characterization of seed-storage fungi by scanning electron microscopy. J. Microscopy 163 (3): 321–332.
38.
O’Neill T.M. 1996. Control of grapevine gray mould with Trichoderma harzianum T39. Biocontrol Sci. Technol. 6 (2): 139–146.
39.
Pisi A., Roberti R., Zakrisson E., Filipini G., Mantovani W., Cesari A. 2001. SEM investigation about hyphal relationships between some antagonistic fungi against Fusarium spp. foot rot pathogen of wheat. Phytopathol. Mediterr. 40 (1): 37–44.
40.
Prasad R.D., Rangeshwaran R., Hegde S.V., Anuroop C.P. 2002. Effect of soil and seed application of Trichoderma harzianum on pigeonpea wilt caused by Fusarium udum under field conditions. Crop Prot. 21 (4): 293–297.
41.
Samuels G.J., Pardo-Schultheiss R., Hebbar K.P., Lumsden R.D., Bastos C.N., Costa J.C., Bezerra J.L. 2000. Trichoderma stromaticum sp. nov., a parasite of the cacao witches broom pathogen. Mycol. Res. 104 (6): 760–764.
42.
Sánchez V., Rebolledo O., Picaso R., Cárdenas E., Córdova J., González O., Samuels G. 2007. In vitro antagonism of Thielaviopsis paradoxa by Trichoderma longibranchiatum. Mycopathologia 163 (1): 49–58.
43.
Saxena M.C. 1993. The challenge of developing biotic and abiotic stress resistance in cool-season food legumes. p. 3-14. In: ‘’Breeding for Stress Tolerance in Cool Season Food Legumes’’ (K. B. Singh, M. C. Saxena, eds.). Wiley, Chichester, UK, 474 pp.
44.
Sazci A., Radford A., Erenler K. 1986. Detection of cellulolytic fungi by using Congo red as an indicator: a comparative study with dinitrosalicyclic acid reagent method. J. Appl. Microbiol. 61 (6): 559–562.
45.
Schubert M., Fink S., Schwarze F.W.M.R. 2008. Evaluation of Trichoderma spp. as a biocontrol agent against wood decay fungi in urban trees. Biol. Control 45 (1): 111–123.
46.
Shalini S., Kotasthane A.S. 2007. Parasitism of Rhizoctonia solani by strains of Trichoderma spp. Electron. J. Environ. Agric. Food Chem. 6 (8): 2272–2281.
47.
Sid Ahmed A., Perez-Sanchez C., Egea C., Candela M.E. 1999. Evaluation of Trichoderma harzianum for controlling root rot caused by Phytophthora capsici in pepper plants. Plant Pathol. 48 (1): 58–65.
48.
Sivasithamparam K., Ghisalberti E.L. 1998. Secondary metabolism in Trichoderma and Gliocladium. p. 139-191. In: ‘’Trichoderma and Gliocladium, Volume I’’ (C.P. Kubicek, G.E. Harman, eds.). Taylor and Francis Ltd., London, UK, 300 pp.
49.
Thrane C., Jensen D.F., Tronsmo A. 2000. Substrate colonization, strain competition, enzyme production in vitro, and biocontrol of Pythium ultimum by Trichoderma spp. isolates P1 and T3. Eur. J. Plant Pathol. 106 (3): 215–225.
50.
Vasudeva R.S., Srinivasan K.V. 1952. Studies on the wilt disease of lentil (Lens esculenta Moench.). Indian Phytopathol. 5 (1): 23–32.
51.
Vinale F., Marra R., Scala F., Ghisalberti E.L., Lorito M., Sivasithamparam K. 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 43 (2): 143–148.
52.
Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. 2008. Trichoderma–plant–pathogen interactions. Soil Biol. Biochem. 40 (1): 1–10.
53.
Yedidia I., Shoresh M., Kerem Z., Benhamou N., Kapulnik Y., Chet I. 2003. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl. Environ. Microbiol. 69 (12): 7343–7353.