REVIEW
Trichoderma spp. - application and prospects for use in organic farming and industry
 
More details
Hide details
1
Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
 
2
University of Life Sciences, Department of Vegetable Crops, Dąbrowskiego 159, 60-594 Poznań, Poland
 
 
Corresponding author
Małgorzata Jędryczka
Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
 
 
Journal of Plant Protection Research 2014;54(4):309-317
 
KEYWORDS
TOPICS
ABSTRACT
Fungi of the genus Trichoderma are a very large group of microorganisms that play a significant role in the environment. They use a variety of mechanisms to colonise various ecological niches. Several Trichoderma spp. positively affect plants by stimulating plant growth, and protecting plants from fungal and bacterial pathogens. They are used in biological plant protection as biofungicides as well as in bioremediation. Members of the genus Trichoderma are also utilised in various industry branches – mainly in the production of enzymes, antibiotics, and other metabolites, but also of biofuel. Moreover, the genus Trichoderma comprises edible and medicinal mushrooms, but also the pathogens of humans. Currently, Trichoderma has entered the genomic era and parts of genome sequences are publicly available. This is why, Trichoderma fungi have the potential to be used for human needs to an even greater extent than before. Nevertheless, further studies are needed to increase the efficiency and safety of the application of these fungi.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (100)
1.
Akhtar M.S., Siddiqui Z.A. 2008. Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp., and Pseudomonas straita. Crop Prot. 27 (3–5): 410−417.
 
2.
Alanio A., Brethon B., Feuihade de Chauvin M., Kerviler E., Leblanc T., Lacroix C., Baruchel A., Menotti J. 2008. Invasive pulmonary infection due to Trichoderma longibrachiatum mimicking invasive Aspergillosis in a neutropenic patient successfully treated with voriconazole combined with caspofungin. Clin. Infect. Dis. 46 (10): 116−118.
 
3.
Arthe R., Rajesh R., Rajesh E.M., Rajendran R., Jeyachandran S. 2008. Production of bio-ethanol from cellulosic cotton waste through microbial extracellular enzymatic hydrolysis and fermentation. Electron. J. Environ., Agric. Food Chem. 7 (6): 2984−2992.
 
4.
Batta Y.A. 2004. Effect of treatment with Trichoderma harzianum Rifai formulated in invert emulsion on postharvest decay of apple blue mold. Int. J. Food Microbiol. 96 (3): 281−288.
 
5.
Benitez T., Rincon A.M., Limon M.C., Codon A.C. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7 (4): 249−260.
 
6.
Bettiol W., Morandi M.A.B. 2008. Trichoderma in Brazil, history, research, commercialization and perspectives. p. 235–237. In: “Molecular Tools for Understanding and Improving Biocontrol” (B. Duffy, M. Maurhoffer, C. Keel, C. Gessler, Y. Elad, S. Klewnick, eds.). 10th meeting of the working group “Biological Control of Fungal and Bacterial Plant Pathogens”, Interlaken, Switzerland, 9–12 September 2008, 389 pp.
 
7.
Bisby G.R. 1939. Trichoderma viride Pers. ex Fries and notes on Hypocrea. Trans. Br. Mycol. Soc. 23 (2): 149−168.
 
8.
Bissett J. 1991a. A revision of the genus Trichoderma. II. Infrageneric classification. Can J. Bot. 69 (11): 2357−2372.
 
9.
Bissett J. 1991b. A revision of the genus Trichoderma. III. Sect. Pachybasium. Can. J. Bot. 69 (11): 2373−2417.
 
10.
Bissett J. 1991c. A revision of the genus Trichoderma. IV. Additional notes on section Longibrachiatum. Can. J. Bot. 69 (11): 2418−2420.
 
11.
Blumenthal C.Z. 2004. Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei, justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regul. Toxicol. Pharmacol. 39 (2): 214−228.
 
12.
Błaszczyk L., Siwulski M., Sobieralski K., Frużyńska-Jóźwiak D. 2013. Diversity of Trichoderma spp. causing Pleurotus green mould diseases in Central Europe. Folia Microbiol. 58 (4): 325−333.
 
13.
Brakhage A.A., Schroeckh V. 2011. Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet. Biol. 48 (1): 15−22.
 
14.
Brunner K., Zeilinger S., Ciliento R., Woo S.L., Lorito M., Kubicek C.P., Mach R.L. 2005. Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic resistance. Appl. Environ. Microbiol. 71 (7): 3959−3965.
 
15.
Corley D.G., Miller-Wideman M., Durley R.C. 1994. Isolation and structure of harzianum A: a new trichothecene from Trichoderma harzianum. J. Nat. Prod. 57 (3): 422−425.
 
16.
Dawidziuk A., Popiel D., Jędryczka M. 2013. The influence of Trichoderma species on Leptosphaeria maculans and L. biglobosa growth on agar media and in oilseed rape plants. Integrated Control in Oilseed Crops IOBC-WPRS Bulletin 92: 119−126.
 
17.
Dengkolb T., Berg A., Gams W., Schlegel B., Grafe U. 2003. The occurrence of peptaibols and structurally related peptabiotics in fungi and their mass spectrometric identification via diagnostic fragment ions. J. Pept. Sci. 9: 666−678.
 
18.
Dolatabadi K.H., Goltapeh E.M., Varma A., Rohani N. 2011. In vitro evaluation of arbuscular mycorrhizal-like fungi and Trichoderma species against soil borne pathogens. J. Agric. Technol. 7: 73−84.
 
19.
Druzhinina I., Kubicek C.P. 2005. Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? J. Zhejiang Univ. Sci. 6 (2): 100−112.
 
20.
Druzhinina I.S., Kopchinsky A.G., Kubicek C.P. 2006. The first 100 Trichoderma species characterized by molecular data. Mycoscience 47 (2): 55−64.
 
21.
Druzhinina I.S., Komon-Zelazowska M., Kredics L., Hatvani L., Antal Z., Belayneh T., Kubicek C.P. 2008. Alternative reproductive strategies of Hypocrea orientalis and genetically close but clonal Trichoderma longibrachiatum, both capable to cause invasive mycoses of humans. Microbiology 54 (11): 3447−3459.
 
22.
Druzhinina I.S., Seidl-Seiboth V., Herrera-Estrella A., Horwitz B.A., Kenerley C.M., Monte E., Mukherjee P.K., Zeilinger S., Grigoriev I.V., Kubicek C.P. 2011. Trichoderma: the genomics of opportunistic success. Nature Rev. Microbiol. 9 (10): 749−759.
 
23.
Dubey S.C., Suresh M., Singh B. 2007. Evaluation of Trichoderma species against Fusarium oxysporum f. sp. ciceris for integrated management of chickpea wilt. Biol. Control 40 (1): 118−127.
 
24.
El-Hassan S.A., Gowen S.R., Pembroke B. 2013. Use of Trichoderma hamatum for biocontrol of lentil vascular wilt disease: efficacy, mechanisms of interaction and future prospects. J. Plant Prot. Res. 53 (1): 12−26.
 
25.
Enari T.M., Niku-Paavola M.L. 1987. Enzymatic hydrolysis of cellulose: Is the current theory of mechanism of the hydrolysis valid? Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Crit. Rev. Biotechnol. 5: 67−87.
 
26.
Evans B.S., Robinson S.J., Kelleher N.L. 2011. Surveys of nonribosomal peptide and polyketide assembly lines in fungi and prospects for their analysis in vitro and in vivo. Fungal Genet. Biol. 48 (1): 49−61.
 
27.
Fudal I., Ross S., Brun H., Besnard A.L., Ermel M., Kuhn M.L., Balesdent M.H., Rouxel T. 2009. Repeat-induced point mutation (RIP) as an alternative mechanism of evolution towards virulence in Leptosphaeria maculans. Mol. Plant-Microbe Interact. 22 (8): 932−941.
 
28.
Galante Y.M., De Conti A., Monteverdi R. 1998a. Application of Trichoderma enzymes in the textile industry. p. 311–326. In: “Trichoderma and Gliocladium”(G.E. Harman, C.P. Kubicek, eds.), Taylor & Francis, London, UK, 393 pp.
 
29.
Galante Y.M., De Conti A., Monteverdi R. 1998b. Application of Trichoderma enzymes in the food and feed industry. p. 327–342. In: “Trichoderma and Gliocladium” (G.E. Harman, C.P. Kubicek, eds.). Taylor & Francis, London, UK, 393 pp.
 
30.
Gallo A., Mule G., Favilla M., Altomare C. 2004. Isolation and characterisation of a trichodiene synthase homologous gene in Trichoderma harzianum. Physiol. Molec. Plant Pathol. 65 (1): 11−20.
 
31.
Gams W., Bisset J. 1998. Morphology and identification of Trichoderma. p. 3−34. In: “Trichoderma and Gliocladium” (G.E. Harman, C.P. Kubicek, eds.). Taylor & Francis, London, UK, 393 pp.
 
32.
Gea F.J. 2009. First report of Trichoderma pleurotum on oyster mushroom crops in Spain. J. Plant. Pathol. 91 (2): 504.
 
33.
Górski R., Sobieralski K., Siwulski M., Frąszczak B., Sas-Golak I. 2014. The effect of Trichoderma isolates, from family mushroom growing farms, on the yield of four Agaricus bisporus (Lange) Imbach strains. J. Plant Prot. Res. 54 (1): 102−105.
 
34.
Hanson L.E., Howell C.R. 2002. Biocontrol efficacy and other characteristics of protoplast fusants between Trichoderma koningii and T. virens. Mycol. Res. 106 (3): 321−328.
 
35.
Haran S., Schickler H., Oppenheim A., Chet I. 1996. Differential expression of Trichoderma harzianum chitinases during mycoparasitism. Phytopathology 86 (9): 980–985.
 
36.
Harman G.E. 2000. Myths and dogmas of biocontrol changes in perceptions derived on Trichoderma harzianum T-22. Plant Dis. 84 (4): 377−393.
 
37.
Harman G.E. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96 (2): 190−194.
 
38.
Harman G.E., Howell C.R., Viterbo A., Chet I., Lorito M. 2004. Trichoderma species – opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2 (1): 43−56.
 
39.
Hatvani L., Antal L., Manczinger L., Szekeres A., Druzhinina I.S., Kubicek C.P., Nagy E., Vagvolgyi C., Kredics L. 2007. Green mold diseases of Agaricus and Pleurotus spp. are caused by related but phylogenetically different Trichoderema species. Phytopathology 97 (4): 532−537.
 
40.
Heraux F.M.G., Hallett S.G., Ragothama K.G., Weller S.C. 2005. Composted chicken manure as a medium for the production and delivery of Trichoderma virens for weed control. HortScience 40 (5): 1394−1397.
 
41.
Hermosa R., Viterbo A., Chet I., Monte E. 2012. Plant-beneficial effects of Trichoderma and its genes. Microbiology 158 (1): 17−25.
 
42.
Herrera-Estrella A., Chet I. 2004. The biological control agent Trichoderma – from fundamentals to applications. p. 147−156. In: “Fungal Biotechnology in Agricultural, Food and Environmental Applications” (D.K. Arora, M. Dekker, eds.). Vol. 21. CRC Press, New York, USA, 700 pp.
 
43.
Hjeljord L.G., Stensvand A., Tronsmo A. 2000. Effect of temperature and nutrient stress on the capacity of commercial Trichoderma products to control Botrytis cinerea and Mucor piriformis in greenhouse strawberries. Biol. Control 19 (2): 146−160.
 
44.
Howell C.R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases; the history and evolution of current concepts. Plant Dis. 87 (1): 4−10.
 
45.
Irelan J.T., Hagemann A.T., Selker E.U. 1994. High frequency repeat-induced point mutation (RIP) is not associated with efficient recombination in Neurospora. Genetics 138 (4): 1093−1103.
 
46.
Jaklitsch W.M. 2009. European species of Hypocrea. Part I. The green-spored species. Stud. Mycol. 63: 1−91.
 
47.
Jeleń H., Błaszczyk L., Chełkowski J., Rogowicz K., Strakowska J. 2013. Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol. Progress 13 (3): 589–600. DOI: 10.1007/s11557-013-0942-2.
 
48.
Kaczmarek J., Jędryczka M. 2011. Characterization of two coexisting pathogen populations of Leptosphaeria spp., the cause of stem canker of brassicas. Acta Agrobot. 64 (2): 3−14.
 
49.
Kaczmarek J., Latunde-Dada A.O., Irzykowski W., Cools H.J., Stonard J.F., Jędryczka M. 2014. Molecular screening for avirulence alleles AvrLm1 and AvrLm6 in airborne inoculum of Leptosphaeria maculans and winter oilseed rape (Brassica napus) plants from Poland and the UK. J. Appl. Genet. 55 (4): 529–539. DOI 10.1007/s13353-014-0235-8.
 
50.
Kancelista A., Tril U., Stempniewicz R., Piegza M., Szczech M., Witkowska D. 2013. Application of lignocellulosic waste materials for the production and stabilization of Trichoderma biomass. Pol. J. Environ. Stud. 22 (4): 1083−1090.
 
51.
Khan J., Ooka J.J., Miller S.A., Madden L.V., Hotitink H.A.J. 2004. Systemic resistance induced by Trichoderma hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis. 88 (3): 280−286.
 
52.
Kindermann J., El-Ayouti Y., Samuels G.J., Kubicek C.P. 1998. Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA clade. Fungal Genet. Biol. 24 (3): 298−309.
 
53.
Komon-Zelazowska M., Bisset J., Zafari D., Hatvani L., Manczinger L., Woo S., Lorito M., Kredics L., Kubicek C.P., Druzhinina I.S. 2007. Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Appl. Environ. Microbiol. 73 (22): 7415−7426.
 
54.
Kowsari M., Motallebi M., Zamani R.M. 2014. Construction of new GFP-tagged fusants for Trichoderma harzianum with enhanced biocontrol activity. J. Plant Prot. Res. 54 (2): 122−131.
 
55.
Kratzer C., Tobudic S., Schmoll M., Graninger W., Georgopoulos A. 2006. In vitroactivity and synergism of amphotericin B, azoles and cationic antimicrobials against the emerging pathogen Trichoderma spp. J. Antimicrob. Chemother. 58 (5): 1058−1061.
 
56.
Kredics L., Antal Z., Doczi I., Manczinger L., Kevei F., Nagy E. 2003. Clinical importance of the genus Trichoderma. A review. Acta Microbiol. Immunol. Hung. 50 (2–3): 105−117.
 
57.
Kredics L., Hatvani L., Antal L., Manczinger L., Druzhinina I.S., Kubicek C.P., Szekeres A., Nagy A., Vagvolgyi C., Nagy E. 2006. Green mold disease of oyster mushroom in Hungary and Transylvania. Acta Microbiol. Immunol. Hung. 53 (3): 306−307.
 
58.
Kredics L., Garcia Jimenez L., Nagimi S., Czifra D., Urban P., Manczinger L., Vagvolgyi C., Hatvani L. 2010. A challenge to mushroom growers, the green mould disease of cultivated champignons. p. 295–305. In: “Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology” (A. Mendez-Vilas, ed.). Microbiology Book Series 2 (1), Formatex, Badajoz, Spain, 788 pp.
 
59.
Kubicek C.P., Herrera-Estrella A., Seidl-Seiboth V., Martinez D.A., Druzhinina J.S. 2011. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 12 (4): R40. DOI: 10.1186/gb-2011-12-4-r40.
 
60.
Kubicek C.P., Mach R.L., Peterbauer C.K., Lorito M. 2001. Trichoderma: From genes to biocontrol. J. Plant Pathol. 83 (2): 11−23.
 
61.
Kullnig-Gradinger C.M., Szakacs G., Kubicek C.P. 2002. Phylogeny and evolution of the fungal genus Trichoderma: a multigene approach. Mycol. Res. 106 (7): 757−767.
 
62.
Larsen F.O., Clementsen P., Hansen M., Maltbaek N., Ostenfeldt-Larsen T., Nielsen K.F., Gravesen S., Skov P.S., Non S. 1998. Volatile compounds from the indoor mould Trichoderma viride cause histamine release from human bronchoalveolar cells. Inflamm. Res. 47 (1): 55−56.
 
63.
Lewis J.A., Lumsden R.D. 2001. Biocontrol of damping-off of greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. Crop Prot. 20 (1): 49−56.
 
64.
Lorito M., Hayes C.K., Di Pietro A., Woo S.L., Harman G.E. 1994. Purification, characterization, and synergistic activity of a glucan 1,3-b-glucosidase and an N-acetyl-b-glucosamin-idase from Trichoderma harzianum. Phytopathology 84 (4): 398−405.
 
65.
Lynch J.M., Moffat A.J. 2005. Bioremediation – prospects for the future application of innovative applied biological research. Ann. Appl. Biol. 146 (2): 217−221.
 
66.
Monte E. 2001. Understanding Trichoderma, between biotechnology and microbial ecology. Int. Microbiol. 4 (1): 1−4.
 
67.
Mukherjee P.K. 2011. Genomics of biological control – whole genome sequencing of two mycoparasitic Trichoderma spp. Curr. Sci. 101 (3): 268.
 
68.
Mukherjee P.K., Horwitz B.A., Kenerley C.M. 2012. Secondary metabolism in Trichoderma – a genomic perspective. Microbiology 158 (1): 35−45.
 
69.
Oda S., Isshiki K., Ohashi S. 2009. Production of 6-pentyl-a-pyrone with Trichoderma atroviride and its mutant in a novel extractive liquid-surface immobilization (Ext-LSi) system. Process Biochem. 44 (6): 625−630.
 
70.
Osbourn A. 2010. Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet. 26 (10): 449–457.
 
71.
Park M.S., Bae K.S., Yu S.H. 2006. Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiology 34 (3): 111−113.
 
72.
Persoon C.H. 1794. Disposita methodica fungorum. Romer’s Neues Mag. Bot. 1: 81−128.
 
73.
Porras M., Barrau C., Romero F. 2007. Effects of soil solarization and Trichoderma on strawberry production. Crop Prot. 26 (5): 782−787.
 
74.
Reino J.L., Guerrero R.F., Hernandez-Galan R., Collado I.G. 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev. 7 (1): 89−123.
 
75.
Rifai M.A. 1969. A revision of the genus Trichoderma. Mycol. Pap. 116: 1−56.
 
76.
Sadowski C., Lenc L., Domoradzki M., Korpal W., Weiner W., Lukanowski A. 2006a. Studies on plant health in organic production of vegetable seeds. p. 410−411. In: Proc. European Joint Organic Congress, Odense, Denmark, 30−31 May 2006, 713 pp.
 
77.
Sadowski C., Lenc L., Korpal W. 2006b. Z badań nad otoczkowaniem nasion warzyw z wykorzystaniem Trichoderma viride i zdrowotnością roślin w uprawie ekologicznej. [Out of investigations of vegetable seed coating with Trichoderma viride and plant health in organic system]. J. Res. Appl. Agric. Eng. 51 (2): 150−153.
 
78.
Sadowski C., Lenc L., Korpal W. 2007. Badania nad możliwością ochrony buraka ćwikłowego przed chorobami grzybowymi w uprawie ekologicznej. [Investigation on the possibility of protection of organically grown red beet against fungal diseases]. J. Res. Appl. Agric. Eng. 52 (4): 38−44.
 
79.
Samuels G.J. 1996. Trichoderma: a review of biology and systematics of the genus. Mycol. Res. 100 (8): 923−935.
 
80.
Samuels G.J., Dodd S.L., Gams W., Castelbury L.A., Petrini O. 2002. Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94 (1): 146−170.
 
81.
Schuster A., Schmoll M. 2010. Biology and biotechnology of Trichoderma. Appl. Microbiol. Biotechnol. 87 (3): 789−799.
 
82.
Sharon E., Bar-Eyal M., Chet I., Herrera-Estrella A., Kleifeld O., Spiegel Y. 2001. Biological control of root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91 (7): 687−693.
 
83.
Shoresh M., Yedidia I., Chet I. 2005. Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95 (1): 76−84.
 
84.
Slot J.C., Rokas A. 2011. Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi. Curr. Biol. 21 (2): 134−139.
 
85.
Smolińska U., Kowalska B., Kowalczyk W., Szczech M. 2014. The use of agro-industrial wastes as carriers of Trichoderma fungi in the parsley cultivation. Sci. Hortic. 179: 1−8.
 
86.
Smolińska U., Kowalska B., Oskiera M. 2007. The effectivity of Trichoderma strains in the protection of cucumber and lettuce against Rhizoctonia solani. Veg. Crops Res. Bull. 67 (1): 81−93.
 
87.
Sobieralski K., Siwulski M., Błaszczyk L., Frąszczak B., Sas-Golak I. 2012a. Impact of infections with Trichoderma pleurotum and Trichoderma pleuroticola isolates on yielding of wild strains of Pleurotus ostreatus (Fr.) Kumm. obtained from natural sites. Acta Sci. Pol. – Hortorum Cultus 11 (1): 239−249.
 
88.
Sobieralski K., Siwulski M., Błaszczyk L., Frużyńska-Jóźwiak D., Lisiecka J. 2012b. The effect of infestation with isolates of Trichoderma sp. on mycelium growth and yielding in single-spore heterokaryotic cultures of Agaricus bisporus (Lange) Imbach. Acta Sci. Pol. – Hortorum Cultus 11 (1): 47−57.
 
89.
Strakowska J., Błaszczyk L., Chełkowski J. 2014. The significance of cellulolytic enzymes produced by Trichoderma in opportunistic lifestyle of this fungus. J. Basic Microb. 54 (Suppl. 1): S2–13. DOI: 10.1002/jobm.201300821.
 
90.
Szczech M., Staniaszek M., Habdes H., Ulinski Z., Szymanski J. 2008. Trichoderma spp. – the cause of green mold on Polish farms. Veg. Crops Res. Bull. 69 (1): 105−114.
 
91.
Szekeres A., Kredics L., Antal L., Hatvani L., Manczinger L., Vagvolgyi C. 2005. Genetic diversity of Trichoderma strains isolated from winter wheat rhizosphere in Hungary. Acta Microbiol. Immunol. Hung. 52: 156.
 
92.
Thrane C., Tronsmo A., Jensen D.F. 1997. Endo-1,3-β-glucanase and cellulose from Trichoderma harzianum: purification and partial characterization, induction of and biological activity against plant pathogenic Pythium spp. Europ. J. Plant Pathol. 103 (4): 331−344.
 
93.
Tulasne L., Tulasne R. 1860. De quelques Sphéries fungicoles, à propos d’un mémoire de M. Antoine de Bary sur les Nyctalis. Ann. Sci. Nat. Bot. 13: 5−19.
 
94.
Vinale F., Sivasithamparam K., Ghisalberti E.L., Marra R., Woo S.L., Lorito M. 2008. Trichoderma – plant – pathogen interactions. Soil Biol. Biochem. 40 (1): 1−10.
 
95.
Viterbo A., Harel M., Chet I. 2004. Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots. FEMS Microbiol. Letters 238 (1): 151−158.
 
96.
Wiater A., Szczodrak J., Pleszczyńska M. 2005. Optimization of conditions for the efficient production of mutant in streptococcal cultures and post-culture liquids. Acta Biol. Hung. 56 (12): 137−150.
 
97.
Williams J., Clarkson J.M., Mils P.R., Cooper R.M. 2003. Saprotrophic and mycoparasitic components of aggressiveness of Trichoderma harzianum groups toward the commercial mushroom Agaricus bisporus. Appl. Environ. Microbiol. 69 (7): 4192−4199.
 
98.
Woo S.L., Lorito M. 2007. Exploiting the interactions between fungal antagonists, pathogens and the plant for biocontrol. p. 107−130. In: “Novel Biotechnologies for Biocontrol Agent Enhancement and Management” (M. Vurro, J. Gressel, eds.). Springer Press, Amsterdam, The Netherlands, 362 pp.
 
99.
Yedidia I., Benhamou N., Chet I. 1999. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol. 65 (3): 1061−1070.
 
100.
Yedidia I., Srivastra A.K., Kapulnik Y., Chet I. 2001. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235 (2): 235−242.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top