ORIGINAL ARTICLE
Tolerance of Brazilian bean cultivars to protoporphyrinogen oxidase inhibiting-herbicides
More details
Hide details
1
Department of Agronomy, Federal Technological University of Paraná (UTFPR), Brazil
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2020-08-06
Acceptance date: 2020-11-30
Online publication date: 2021-06-19
Corresponding author
Antonio Pedro Brusamarello
Department of Agronomy, Federal Technological University of Paraná (UTFPR), Via do Conhecimento Km 1, 571, Pato Branco, Brazil
Journal of Plant Protection Research 2021;61(2):117-126
KEYWORDS
TOPICS
ABSTRACT
The high sensitivity of beans to herbicides is one of the limiting factors regarding the management
of dicot weeds in bean crops. Protoporphyrinogen oxidase (PPO) inhibition is
an important mechanism of action that has unregistered molecules with potential use in
bean crops. The objectives of this study were to investigate the tolerance of Brazilian bean
cultivars to distinct PPO inhibitors and to determine the existence of cross-tolerance in cultivars
to the different PPO inhibitor chemical groups. In the first and second experiments,
the BRSMG Talismã, Jalo Precoce, BRS Esplendor, and IPR 81 cultivars were subjected to
saflufenacil doses pre- (0, 9.6, 14.1, 20.5, 30.0, and 43.8 g a.i. ‧ ha–1) and post-emergence
(0, 0.7, 1.0, 1.5, 2.1, and 3.1 g a.i. ‧ ha–1). In the third experiment, the tolerance of 28 bean
genotypes to saflufenacil (20.5 g a.i. ‧ ha–1) in pre-emergence was determined. In the fourth,
fifth, sixth and seventh experiments, we investigated the cross-tolerance of bean to the fomesafen,
flumioxazin, sulfentrazone, and saflufenacil herbicides, respectively. Even very
low saflufenacil doses in post-emergence caused plants of all cultivars to die rapidly; therefore,
the tolerance was much lower at this application time than in pre-emergence. There
was high tolerance variability to saflufenacil among the 28 cultivars. The bean tolerance to
fomesafen, flumioxazin, sulfentrazone, and saflufenacil applied pre-emergence depended
on the cultivar and dose. Fomesafen was highlighted owing to its higher selectivity in relation
to the different cultivars. No cross-tolerance pattern to the PPO inhibitor chemical
groups applied in pre-emergence was observed among the evaluated bean cultivars. The
results of this study could be of significance to farmers and technical assistance personnel,
as well as for future research on cultivar breeding and the elucidation of biochemical and
genetic mechanisms involved in herbicide tolerance.
ACKNOWLEDGEMENTS
The authors would like to acknowledge the Coordination
for the Improvement of Higher Education Personnel
(CAPES) and National Conuncil of Scientific and
Technological Development (CNPq) for providing scholarships,
and the Federal University of Technology Paraná
for supplying financial support and infrastructure.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (40)
2.
Aldridge R.B., Jennings K.M., Chaudhari S., Monks D.W., Everman W.J., Mehra L.K. 2019. Tolerance of southern highbush and rabbiteye blueberry cultivars to saflufenacil. Weed Technology 33 (3): 475–480. DOI:
https://doi.org/10.1017/wet.20....
3.
Azania C.A.M., Azania A.A.P.M.A. 2014. Seletividade de herbicidas. p. 217–233. In: “Aspectos da Biologia e Manejo de Plantas Daninhas” [Aspects of biology and weed management] (P.A. Monquero, ed.). São Carlos: Rima Editora. (in Portuguese).
4.
Bailey W.A., Hatzios K.K., Bradley K.W., Wilson H.P. 2003. Absorption, translocation, and metabolism of sulfentrazone in potato and selected weed species. Weed Science 51 (1): 32–36. DOI:
https://doi.org/10.1614/0043-1....
5.
Barroso A.A.M., Yamauti M.S., Alves P.L.C.A. 2010. Competitive interaction between commom black bean cultivars and Euphorbia heterophylla. Bragantia 69 (3): 609–616. DOI:
https://doi.org/10.1590/1983-4....
7.
Castro M.J.L., Ojeda C., Cirelii A.F. 2013. Advances in surfactants for agrochemicals. Environmental Chemistry Letters 12 (1): 85–95. DOI:
https://doi.org/10.1007/s10311....
8.
Dayan F.E., Weete J.D., Duke S.O., Hancock H.G. 1997. Soybean cultivars differences in response to sulfentrazone. Weed Science 45 (5): 634–641. DOI:
https://doi.org/10.1017/S00431....
9.
Diesel F., Trezzi M.M., Oliveira P.H., Xavier E., Pazuch D., Pagnoncelli F. Jr. 2014. Tolerance of dry bean cultivars to saflufenacil. Ciência e Agrotecnologia 38 (4): 352–360. DOI:
http://dx.doi.org/10.1590/S141....
10.
Embrapa (Empresa Brasileira de Pesquisa Agropecuária). 2018. Sistema Brasileiro de Classificação de Solos. [Brazilian System of Soil Classification]. 5th ed. Revista e Ampliada, Brasília, Brasil, 356 pp. (in Portuguese).
12.
Ferreira E.A., Concenço G., Vargas L., Silva A.A. 2009. Manejo de plantas daninhas tolerantes ou resistentes ao glyphosate no Brasil. [Management of glyphosate-tolerant or resistant weeds in Brazil]. p. 357–400. In: “Glyphosate” (E.D. Velini, D.K. Meschede, C.A. Carbonari, M.L.B. Trindade, eds.). Botucatu: Fepaf, 493 pp. (in Portuguese).
13.
Ferreira E.B., Cavalcanti P.P., Nogueira D.A. 2011. ExpDes: Experimental Designs package R package version 1.1.1. FMC (FMC Química do Brasil Ltda). 2017. Boral® 500 SC. Available on:
http://www.adapar.pr.gov.br/ar.... [Accessed: 10 January 2020].
14.
Frans R., Talbert R., Marx D., Crowley H. 1986. Experimental design and techniques for measuring and analyzing plant responses to weed control practices. p. 29–46. In: “Research Methods in Weed Science” (N.D. Camer, ed.). 3rd ed. Champaign, Southern Weed Science Society, USA, 486 pp.
15.
Gannon T.W., Hixson A.C., Keller K.E., Weber J.B., Knezevic S.Z., Yelverton F.H. 2014. Soil properties influence saflufenacil phytotoxicity. Weed Science 62 (4): 657–663. DOI:
https://doi.org/10.1614/WS-D-1....
16.
Grossmann K., Hutzler J., Caspar G., Kwiatkowski J., Brommer C.L. 2011. Saflufenacil (KixorTM): biokinetic properties and mechanism of selectivity of a new protoporphyrinogen IX oxidase inhibiting herbicide. Weed Science 59 (3): 290–298. DOI:
https://doi.org/10.1614/WS-D-1....
17.
Hao G.F., Zuo Y., Yang S.G., Yang G.F. 2011. Protoporphyrinogen oxidase inhibitor: an ideal target for herbicide discovery. Chemistry in China 65 (12): 961–969. DOI:
https://doi.org/10.2533/chimia....
18.
Hekmat S., Shropshire C., Soltani N., Sikkema P.H. 2007. Responses of dry beans (Phaseolus vulgaris L.) to sulfentrazone. Crop Protection 26 (4): 525–529. DOI:
https://doi.org/10.1016/j.crop....
19.
Kilink O., Grasset R., Reynaud S. 2011. The herbicide aclonifen: the complex theoretical basis of sunflower tolerance. Pesticide Biochemistry and Physiology 100 (2): 193–198. DOI:
https://doi.org/10.1016/j.pest....
20.
Li Z., Van Acker R., Robinson D., Soltani N., Sikkema P. 2017. Managing weeds with herbicides in white bean in Canada: a review. Canadian Journal of Plant Science 97 (5): 755–766. DOI:
https://doi.org/10.1139/cjps-2....
21.
Li Z., Wehtje G.R., Walker R.H. 2000. Physiological basis for the differential tolerance of Glycine max to sulfentrazone during seed germination. Weed Science 48 (3): 281–285. DOI:
https://doi.org/10.1614/0043-1....
22.
Mapa (Ministério da Agricultura Pecuária e Abastecimento). 2020. Agrofit: Sistema de agrotóxicos fitossanitários. [Agrofit: Phytosanitary Pesticide System]. Available on:
http://agrofit.agricultura.gov.... [Accessed: 12 January 2020]. (in Portuguese).
23.
Oliveira Jr. R.S., Constantin J., Inoue M.H. 2011. Biologia e Manejo de Plantas Daninhas. [Weed Biology and Management]. Omnipax, Curitiba, Brasil, 348 pp. (in Portuguese).
24.
RStudio Team. 2016. Integrated Development for R. RStudio, Boston, MA.
25.
Rumpa M.M., Krausz R.F., Gibson D.J., Gage K.L. 2019. Effect of PPO-inhibiting herbicides on the growth and sex ratio of a dioecious weed species Amaranthus palmeri (Palmer Amaranth). Agronomy 9 (275): 1–14. DOI:
https://doi.org/10.3390/agrono....
26.
Sigmaplot. 2006. Exact Graphy for Exact Science. Version 10.0.
27.
Sikkema P., Shropshire C., Soltani N. 2009. Response of dry bean to pre-plant incorporated and pre-emergence applications of s-metolachlor and fomesafen. Crop Protection 28 (9): 744–748. DOI:
https://doi.org/10.1016/j.crop....
28.
Silva D.V., Santos J.B., Silveira H.M., Carvalho F.P., Neto M.D.C., Ferreira E.A., Silva A.A., Cecon P.R. 2011. Tolerância de cultivares de mandioca aos herbicidas fomesafen e fluazifop-p-butil. [Tolerance of cassava cultivars to fomesafen and fluazifop-p-butyl herbicides]. Revista Brasileira de Herbicidas 10 (3): 219–231. DOI:
https://doi.org/10.7824/rbh.v1.... (in Portuguese).
30.
Soltani N., Shropshire C., Sikkema P.H. 2010. Sensibility of leguminous crops to saflufenacil. Weed Technology 24 (2): 143–146. DOI:
https://doi.org/10.1614/WT-09-....
31.
Soltani N., Shropshire C., Sikkema P.H. 2014a. Sensitivity of dry bean to dimethenamid-p, saflufenacil and dimethenamid-p/saflufenacil. American Journal of Plant Science 5 (21): 3288–3294. DOI:
http://dx.doi.org/10.4236/ajps....
32.
Soltani N., Shropshire C., Sikkema P.H. 2014b. Response of dry bean to sulfentrazone plus imazethapyr. International Journal of Agronomy 2014 (3): 1–6. DOI:
http://dx.doi.org/10.1155/2014....
33.
Soltani N., Shropshire C., Sikkema P.H. 2019. Sensitivity of dry bean to herbicides applied preplant for glyphosate-resistant horseweed control in a strip-tillage cropping system. Weed Technology 33 (1): 178–184. DOI:
https://doi.org/10.1017/wet.20....
36.
Taziar A.N., Soltani N., Shropshire C., Robinson D.E., Long M., Gillard C.L., Sikkema P.H. 2016. Response of four dry bean market classes to pre-emergence applications of pyroxasulfone, sulfentrazone and pyroxasulfone plus sulfentrazone. American Journal of Plant Sciences 2016 (7): 1217–1225. DOI:
http://dx.doi.org/10.4236/ajps....
38.
Vidal R.A. 2002. Ação dos Herbicidas: Absorção, Translocação e Metabolização. [Herbicide Action: Absorption, Translocation and Metabolization]. Evangraf, Porto Alegre, Brasil, 89 pp. (in Portuguese).
39.
Vidal R.A., Merotto Jr. A., Schaedler C.A., Lamego F.P., Portugal J., Menendes J., Kozlowski L.A., Trezzi M.M., De Prado R. 2014. Mecanismos de ação de herbicidas. [Herbicide mechanisms of action]. p. 235–256. In: “Aspectos da Biologia e Manejo das Plantas Daninhas” (P. Monquero, ed.). [Aspects of Weed Biology and Management]. Rima, São Carlos, Brasil, 400 pp. (in Portuguese).
40.
Xavier E., Trezzi M.M., Oliveira M.C., Vidal R.A., Brusamarello A.P. 2018. Activity of antioxidant enzymes in Euphorbia heterophylla biotypes and their relation to cross resistance to ALS and Protox inhibitors. Planta Daninha 36 (1): 1–13. DOI:
https://doi.org/10.1590/s0100-....