ORIGINAL ARTICLE
The protective effect of trehalose and monosodium glutamate on yeast viability and antagonistic properties during freeze-drying
,
 
 
 
 
More details
Hide details
1
Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection – National Research Institute, Poznań, Poland
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2024-03-03
 
 
Acceptance date: 2024-05-17
 
 
Online publication date: 2024-11-20
 
 
Corresponding author
Joanna Krzymińska   

Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection – National Research Institute, Poznań, Poland
 
 
Journal of Plant Protection Research 2024;64(4):362-372
 
HIGHLIGHTS
  • MG and trehalose preserved yeast's antagonistic abilities during freeze-drying.
  • Treatment efficacy depended on isolate, supplements and timing of the treatment.
  • The interplay between those factors affected the outcome.
  • Isolate 117/10 was the most effective, MG and trehalose preserved its properties.
  • Preventive treatments were generally more effective than intervention.
KEYWORDS
TOPICS
ABSTRACT
In the present eco-conscious era, consumers opt for food choices reflecting ethical and environmental concerns, which increases the demand for organic products. Biocontrol is a viable plant protection method in organic farming. Freeze-drying is a long-term preservation technique for microbial agents, ensuring their genetic stability and viability. To reduce freeze-drying-induced damage to their cells, cryoprotective agents like trehalose and monosodium glutamate are used. This study evaluated the impact of the addition of these substances during the freeze-drying process on chosen yeast isolates’ viability, their ability to survive on tomato leaves and maintain antagonistic properties against Botrytis cinerea Pers. Yeast isolates 114/73 (Wickerhamomyces anomalus E.C. Hansen) and 117/10 (Naganishia albidosimilis Vishniac & Kurtzman) were tested on tomato plants under greenhouse conditions before and after the freeze-drying process for both the ability to colonize leaves and as a preventive and interventional treatment against B. cinerea. Yeast viability post freeze-drying was evaluated in vitro. Both trehalose and monosodium glutamate increased yeast viability during the freeze-drying process. Viability was not very high (from 30.33 to 36.17% for 117/10 and from 10.67 to 16.5% for 114/73). Yeast dehydrated after freeze-drying, protected with trehalose and monosodium glutamate, displayed the same colony count on tomato leaves as before freeze-drying. The efficacy of protective treatments depended on the yeast isolate, the protective substance used during freeze-drying, treatment timing (prevention vs. intervention), and interactions of those factors. Cryopreserved isolate 117/10 performed better than 114/73 with the addition of either trehalose or monosodium glutamate, reducing the disease severity index from 88.3% (control) to 18.75−55.33%. Preventive treatments were more efficient than intervention. The leaf colonization ability and biocontrol efficacy of yeast isolates against B. cinerea post-freeze-drying offer promising solutions in sustainable agriculture. However, further research, to analyze the interactions between various factors and to optimize strategies may be needed.
RESPONSIBLE EDITOR
Anna Baturo-Cieśniewska
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (63)
1.
Abadias M., Benabarre A., Teixidó N., Usall J., Viñas I. 2001. Effect of freeze-drying and protectants on viability of the biocontrol yeast Candida sake. International Journal of Food Microbiology 65: 173–182. DOI: https://doi.org/10.1016/S0168-....
 
2.
Argüelles J.C. 2000. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Archives of Microbiology 174: 217–224. DOI: https://doi.org/10.1007/s00203....
 
3.
Aristimuño Ficoseco C., Mansilla F., Vignolo G., Nader-Macías M.E. 2023. Optimization of probiotic Lactobacilli production for in-feed supplementation to feedlot cattle. Applied Microbiology 3 (2): 24. DOI: https://doi.org/10.3390/applmi....
 
4.
Asada R., Watanabe T., Tanaka Y., Kishida M., Furuta M. 2022. Trehalose accumulation and radiation resistance due to prior heat stress in Saccharomyces cerevisiae. Archives of Microbiology 204 (5): 275. DOI: https://doi.org/10.1007/00203-....
 
5.
Assohoun W.L.A. 2022. Survival ability during freeze-drying and subsequent storage of probiotic lactic acid bacteria isolated from traditional fermented cereal-based products. International Journal of Current Microbiology and Applied Sciences 11 (6): 1–13. DOI: https://doi.org/10.20546/ijcma....
 
6.
Bae G.E., Choi S.W., Lee B.H., Yoo S.H. 2022. Application of turanose as a cryoprotectant for the improvement of Ba-ker’s yeast storability. Korean Journal of Food Science and Technology 54 (2): 224–227. DOI: https://doi.org/10.1039/C5EE03....
 
7.
Bashir I., War A.F., Rafiq I., Reshi Z.A., Rashid I., Shouche Y.S. 2022. Phyllosphere microbiome: Diversity and functions. Microbiological Research 254: 126888. DOI: https://doi.org/10.1016/j.micr....
 
8.
Bechtold E.K., Ryan S., Moughan S.E., Ranjan R., Nüsslein K. 2021. Phyllosphere community assembly and response to drought stress on common tropical and temperate forage grasses. Applied and Environmental Microbiology 87 (17): e00895–21. DOI: https://doi.org/10.1128/aem.00....
 
9.
Bhandari R., Saez A.S., Leisner C.P., Potnis N. 2023. Xanthomonas infection and ozone stress distinctly influence the microbial community structure and interactions in the pepper phyllosphere. ISME Communications 3 (1): 24. DOI: https://doi.org/10.1038/s43705....
 
10.
Bond C. 2007. Freeze-drying of yeast cultures. p. 99–107. In: “Cryopreservation and Freeze-Drying Protocols” (J.G. Day, G.N. Stacey, eds.). Humana Totowa, NJ, USA. 347 pp. DOI: https://doi.org/10.1007/978-1-....
 
11.
Carvalho A.S., Silva J.G.L., Ho P., Teixeira P., Malcata F., Gibbs P. 2003. Protective effect of sorbitol and monosodium glutamate during storage of freeze-dried lactic acid bacteria. Lait 83 (3): 203–210. DOI: https://doi.org/10.1016/j.idai....
 
12.
Castro-Ríos K., Bermeo-Escobar L.P. 2021. Methods for the culture conservation of edible and medicinal fungi. Journal of Microbiology, Biotechnology and Food Sciences 10 (4): 620–625. DOI: https://doi.org/10.15414/jmbfs....
 
13.
Chen H., Lei Z., Hong H., Zhai Y., Huang D. 2016. Screening freeze-drying cryoprotectants for Saccharomyces boulardii by Plackett-Burman design. The Annals of the University Dunarea de Jos of Galati. Fascicle VI-Food Technology 40 (2): 83−97.
 
14.
Chu‐Ky S., Vaysse L., Liengprayoon S., Sriroth K., Le T.M. 2013. Acid adaptation for improvement of viability of Saccharomyces cerevisiae during freeze‐drying. International Journal of Food Science & Technology 48 (7): 1468–1473. DOI: https://doi.org/10.1111/ijfs.1....
 
15.
Dey T., Rangarajan P. 2021. Post-transcriptional regulation of glutamate metabolism of Pichia pastoris and development of a glutamate-inducible yeast expression system. bioRxiv. DOI: https://doi.org/10.1101/2021.0....
 
16.
Dhanasekaran S., Yang Q., Godana E.A., Liu J., Li J., Zhang H. 2021. Trehalose supplementation enhanced the biocontrol efficiency of Sporidiobolus pararoseus Y16 through increased oxidative stress tolerance and altered transcriptome. Pest Management Science 77 (10): 4425–4436. DOI: https://doi.org/10.1002/ps.647....
 
17.
Elbein A., Pan Y.T., Pastuszak I., Carroll D. 2003. New insights on trehalose: a multifunctional molecule. Glycobiology 13 (4): 17R–27R. DOI: https://doi.org/10.1093/glycob....
 
18.
Fernandez-San Millan A., Fernandez-Irigoyen J., Santamaria E., Larraya L., Farran I., Veramendi J. 2023. Metschnikowia pulcherrima as an efficient biocontrol agent of Botrytis cinerea infection in apples: Unraveling protection mechanisms through yeast proteomics. Biological Control 183: 105266. DOI: https://doi.org/10.1016/j.bioc....
 
19.
Freitas A.B.D., Endres C.M., Martini D., Castel A.P.D. 2020. Action of cryoprotectors glucose, trealose and quitosan in maintaining viability of Escherichia coli, Saccharomyces cerevisiae cells after lyophilization. Ciência Animal Brasileira 21: e-47464. DOI: 10.1590/1809-6891v21e-47464.
 
20.
Gong G., Guo G., Zhang X., Tan T. 2016. Effect of ammonium-N on malic enzyme and lipid production in Rhodotorula glutinis grown on monosodium glutamate wastewater. Biocatalysis and Biotransformation 34 (1): 18–23. DOI: https://doi.org/10.1080/102424....
 
21.
Gouka L., Raaijmakers J.M., Cordovez V. 2022. Ecology and functional potential of phyllosphere yeasts. Trends in Plant Science 27 (11): 1109–1123. DOI: https://doi.org/10.1016/j.tpla....
 
22.
Grabka R., d’Entremont T.W., Adams S.J., Walker A.K., Tanney J.B., Abbasi P.A., Ali S. 2022. Fungal endophytes and their role in agricultural plant protection against pests and pathogens. Plants 11 (3): 384. DOI: https://doi.org/10.3390/plants....
 
23.
Han P., Ni L., Wei Y., Jiang S., Xu F., Wang H., Shao X. 2021a. Optimization of the freeze-drying of marine yeast Sporidiobolus pararoseus ZMY-1 for its application in biocontrol of fungal infections. Biological Control 161: 104707. DOI: https://doi.org/10.1016/j.bioc....
 
24.
Han Y., Zhang Y., Xia X. 2021b. Screening of protective agent and bioactivity analysis of bread yeast freeze-dried powder. Science and Technology of Food Industry 42 (7): 119–128. DOI: https://doi.org/10.13386/j.iss....
 
25.
Hubalek Z. 2003. Protectants used in the cryopreservation of microorganisms. Cryobiology 46 (3): 205–229. DOI: https://doi.org/10.1016/S0011-....
 
26.
Iftikhar Y., Sajid A., Shakeel Q., Ahmad Z., Ul Haq Z. 2020. Biological antagonism: a safe and sustainable way to manage plant diseases. p. 83–109. In: “Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches” (I. Ul Haq, S. Ijaz, eds.). Springer Cham, New York, USA, 339 pp. DOI: https://doi.org/10.1007/978-3-....
 
27.
Koskella B. 2020. The phyllosphere. Current Biology 30 (19): R1143−R1146. DOI: https://doi.org/10.1016/j.cub.....
 
28.
Kour D., Rana K.L., Yadav A.N., Yadav N., Kumar M., Kumar V., Vyas P., Dhaliwal H.S., Saxena A.K. 2020. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology 23: 101487. DOI: https://doi.org/10.1016/j.bcab....
 
29.
Li B.Q., Tian S.P. 2006. Effects of trehalose on stress tolerance and biocontrol efficacy of Cryptococcus laurentii. Journal of Applied Microbiology 100 (4): 854–861. DOI: https://doi.org/10.1111/j.1365....
 
30.
Li Y., Zhao F., Li C., Xie X., Ban X., Gu Z., Li Z. 2023a. Short-clustered maltodextrin provides cryoprotection by maintaining cell membrane homeostasis of yeast during frozen storage. Food Chemistry 405: 134729. DOI: https://doi.org/10.1016/j.food....
 
31.
Li Y., Zhao F., Li C., Ban X., Gu Z., Li Z. 2023b. Mechanistic insights into the improvement of yeast viability by adding short-clustered maltodextrin during long-term frozen storage. Food Hydrocolloids 134: 108092. DOI: https://doi.org/10.1016/j.food....
 
32.
Li Y., Jiang G., Long H., Liao Y., Wu L., Huang W., Liu X. 2023c. Contribution of trehalose to ethanol stress tolerance of Wickerhamomyces anomalus. BMC Microbiology 23 (1): 239. DOI: https://doi.org/10.1186/s12866....
 
33.
Lin N.X., Xu Y., Yu X.W. 2021. Overview of yeast environmental stress response pathways and the development of tolerant yeasts. Systems Microbiology and Biomanufacturing: 1–14. DOI: https://doi.org/10.1007/s43393....
 
34.
Lin T., Lu Q., Zheng Z., Li S., Li S., Liu Y., Han S. 2023. Soil cadmium stress affects the phyllosphere microbiome and associated pathogen resistance differently in male and female poplars. Journal of Experimental Botany 74 (6): 2188–2202. DOI: https://doi.org/10.1093/jxb/er....
 
35.
Liu J., Song M., Wei X., Zhang H., Bai Z., Zhuang X. 2022. Responses of phyllosphere microbiome to ozone stress: abundance, community compositions and functions. Microorganisms 10 (4): 680. DOI: https://doi.org/10.3390/microo....
 
36.
Lu Y., Huang L., Yang T., Lv F., Lu Z. 2017. Optimization of a cryoprotective medium to increase the viability of freezedried Streptococcus thermophilus by response surface methodology. LWT – Food Science and Technology 80: 92–97. DOI: https://doi.org/10.1016/J.LWT.....
 
37.
Mahmud S.A., Hirasawa T., Shimizu H. 2010. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. Journal of Bioscience and Bioengineering 109 (3): 262–266. DOI: https://doi.org/10.1016/j.jbio....
 
38.
Mara P., Fragiadakis G., Gkountromichos F., Alexandraki D. 2018. The pleiotropic effects of the glutamate dehydrogenase (GDH) pathway in Saccharomyces cerevisiae. Microbial Cell Factories 17 (1): 179. DOI: https://doi.org/10.1186/s12934....
 
39.
Marcantonini G., Bartolini D., Zatini L., Costa S., Passerini M., Rende M., Galli F. 2022. Natural cryoprotective and cytoprotective agents in cryopreservation: A focus on melatonin. Molecules 27 (10): 3254. DOI: https://doi.org/10.3390/molecu....
 
40.
Marrone P.G. 2024. Status of the biopesticide market and prospects for new bioherbicides. Pest Management Science 80 (1): 81–86. DOI: https://doi.org/10.1002/ps.740....
 
41.
Moon J.E., Heo W., Lee S.H., Lee S.H., Lee H.G., Lee J.H., Kim Y.J. 2020. Trehalose protects the probiotic yeast Saccharomyces boulardii against oxidative stress-induced cell death. Journal of Microbiology and Biotechnology 30 (1): 54. DOI: https://doi.org/10.4014/jmb.19....
 
42.
Morgan C.A., Herman N., White P.A., Vesey G. 2006. Preservation of micro-organisms by drying; a review. Journal of Microbiological Methods 66 (2): 183–193. DOI: https://doi.org/10.1016/j.mime....
 
43.
Navarta L.G., Calvo J., Posetto P., Benuzzi D., Sanz M.I. 2020. Freeze-drying of a mixture of bacterium and yeast for application in postharvest control of pathogenic fungi. SN Applied Sciences 2: 1–8. DOI: https://doi.org/10.1007/s42452....
 
44.
Navarta L.G., Calvo J., Posetto P., Cerutti S., Raba J., Benuzzi D., Sanz M.I. 2014. Postharvest control of gray mold in apples with lyophilized formulations of Cryptococcus laurentii: the effect of cold stress in the survival and effectiveness of the yeast. Food and Bioprocess Technology 7: 2962–2968. DOI: https://doi.org/10.1007/s11947....
 
45.
Nigam N., Mukerji K.G. 2023. Biological control – concepts and practices. p. 1–14. In: “Biocontrol of Plant Diseases” (K.G. Mukerji, K.L. Garg, eds.). CRC Press, Boca Raton, USA, 224 pp. DOI: https://doi.org/10.1201/978042....
 
46.
Park S.K., Jin H., Lee C.M., Baik S.H. 2023. Effect of protectants and fermentative properties of Saccharomyces cerevisiae JBCC-95 isolated from makgeolli after freeze drying 52 (5): 516–521. DOI: https://doi.org/10.3746/jkfn.2....
 
47.
Perreault R., Laforest-Lapointe I. 2022. Plant-microbe interactions in the phyllosphere: facing challenges of the anthropocene. The ISME Journal 16 (2): 339–345. DOI: https://doi.org/10.1038/s41396....
 
48.
Polomska X., Wojtatowicz M., Zarowska B., Szoltysik M., Chrzanowska J. 2012. Freeze-drying preservation of yeast adjunct cultures for cheese production. Polish Journal of Food and Nutrition Sciences 62 (3): 143–150. DOI: https://doi.org/10.2478/v10222....
 
49.
Remlein-Starosta D., Krzymińska J., Kowalska J., Bocianowski J. 2016. Evaluation of yeast-like fungi to protect Virginia mallow (Sida hermaphrodita) against Sclerotinia sclerotiorum. Canadian Journal of Plant Science 96 (2): 243–251. DOI: https://doi.org/10.1139/cjps-2....
 
50.
Rockinger U., Funk M., Winter G. 2021. Current approaches of preservation of cells during (freeze-) drying. Journal of Pharmaceutical Sciences 110 (8): 2873–2893. DOI: https://doi.org/10.1016/j.xphs....
 
51.
Sharma R., Sanodiya B.S., Thakur G.S., Jaiswal P., Sharma A., Bisen P. 2014. Standardization of lyophilization medium for Streptococcus thermophilus subjected to viability escalation on freeze drying. Microbiology Research 5 (3): 54–62. DOI: https://doi.org/10.4081/MR.201....
 
52.
Shu G., Yang X., Lei Z., Huang D., Zhai Y. 2018. Effects of carbohydrates, prebiotics and salts on survival of Saccharomyces boulardii during freeze-drying. Acta Universitatis Cibiniensis-Series E: Food Technology 22 (2): 59–66. DOI: https://doi.org/10.2478/aucft-....
 
53.
Silva E., Mesquita A., Locatelli G.O., Andrade S., Machado E.D.C.L., da Silva C.G.M. 2021. Cryoprotectant effect of maltodextrin and sucrose on cell viability of microorganisms of freeze-dried kefir. In: “Proceedings of 14 SLACA – Latin American Symposium on Food Science”. 12–14 December 2021, online event.
 
54.
Sobolewski J., Robak J. 2004. Możliwości kompleksowej ochrony pomidora z wykorzystaniem nowych fungicydów i środków pochodzenia organicznego. Progress in Plant Protection/Postępy w Ochronie Roślin 44 (2): 1105–1107.
 
55.
Stefanello R., Machado A., Cavalheiro C.P., Santos M.M.A., Nabeshima E.H., Copetti M., Fries L.M. 2018. Trehalose as a cryoprotectant in freeze-dried wheat sourdough production. LWT – Food Science and Technology 89: 392–398. DOI: https://doi.org/10.1016/j.lwt.....
 
56.
Stefanello R.F., Nabeshima E.H., Iamanaka B.T., Ludwig A., Fries L.L.M., Bernardi A.O., Copetti M.V. 2019. Survival and stability of Lactobacillus fermentum and Wickerhamomyces anomalus strains upon lyophilisation with different cryoprotectant agents. Food Research International 115: 90–94. DOI: https://doi.org/10.1016/j.food....
 
57.
Sun X., Zhang J., Fan Z.-H., Xiao P., Li F., Liu H.-Q., Zhu W.-B. 2020. MAL62 overexpression enhances uridine diphosphoglucose-dependent trehalose synthesis and glycerol metabolism for cryoprotection of baker’s yeast in lean dough. Microbial Cell Factories 19 (1): 142. DOI: https://doi.org/10.1186/s12934....
 
58.
Tang H.W., Abbasiliasi S., Murugan P., Tam Y.J., Ng H.S., Tan J.S. 2020. Influence of freeze-drying and spray-drying preservation methods on survivability rate of different types of protectants encapsulated Lactobacillus acidophilus FTDC 3081. Bioscience, Biotechnology, and Biochemistry 84 (9): 1913–920. DOI: https://doi.org/10.1080/091684....
 
59.
Tanimomo J., Delcenserie V., Taminiau B., Daube G., Saint--Hubert C., Durieux A. 2016. Growth and freeze-drying optimization of Bifidobacterium crudilactis. Food and Nutrition Sciences 7 (7): 633–643. DOI: https://doi.org/10.4236/FNS.20....
 
60.
Wang L., Huang G., Ma W.-P., Jin G. 2023. Preparation and application of directed vat set indigenous freeze-drying Lentilactobacillus hilgardii Q19 starter in winemaking. Foods 12 (5): 1053. DOI: https://doi.org/10.3390/foods1....
 
61.
Wolkers W.F., Oldenhof H. 2015. Cryopreservation and freeze-drying protocols. 3rd ed. Springer New York, NY, USA, 509 pp. DOI: https://doi.org/10.1007/978-1-....
 
62.
Wolkers W.F., Tablin F., Crowe J.H. 2002. From anhydrobiosis to freeze-drying of eukaryotic cells. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 131 (3): 535–543. DOI: https://doi.org/10.1016/1095-6....
 
63.
Yin H., Wang Y.-b., He Y., Xing L., Zhang X., Wang S., Qi X., Zheng Z., Lu J., Miao J. 2017. Cloning and expression analysis of tps, and cryopreservation research of trehalose from Antarctic strain Pseudozyma sp. 3 Biotech 7 (5): 298. DOI: https://doi.org/10.1007/s13205....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top