ORIGINAL ARTICLE
 
HIGHLIGHTS
  • Candidatus Liberibacter asiaticus, a phloem-limited bacteria, was transmitted by the Asian citrus psyllid Diaphorina citri
  • The effect of Bacillus on citrus plant growth and the feeding behavior of Diaphorina citri was evaluated
  • The application of Bacillus cereus and Bacillus velezensis enhanced plant resistance to stylet penetration of Diaphorina citri on the citrus phloem tissues
KEYWORDS
TOPICS
ABSTRACT
Diaphorina citri, an important pest and insect vector that can transmit the pathogenic bacteria Candidatus Liberibacter asiaticus, causing Huanglongbing disease, is one of many challenges in citrus agriculture. Integrated pest management by utilizing microorganisms is a wise and efficient alternative without damaging the environment. Utilization of Plant Growth Promoting Rhizobacteria (PGPR), such as Bacillus cereus and B. velezensis, is a potential strategy for the biological control of plant diseases or insect vectors. By inducing systemic resistance in plants, PGPR can enhance plant defense against diseases and insect pests while activating molecular and physiological changes in plants. This research aimed to determine the effect of B. cereus and B. velezensis on the plant growth and feeding behavior of D. citri. The height and volume of the plant canopy were observed periodically for 6 months, while the feeding behavior of D. citri was monitored using the Electrical Penetration Graph (DC-EPG). The results showed increased height and volume of the citrus plant canopy treated with B. cereus, indicating that B. cereus could act as a PGPR. The application of B. cereus and B. velezensis to citrus seedlings affected the feeding behavior of D. citri. D. citri showed difficulty in penetrating the phloem tissue of citrus plants.
FUNDING
This work was supported partly by the Australian Center for International Agricultural Research (Grant No. ACIAR HORT 2019/164) and Universitas Gadjah Mada under the RTA Program (Grant No. 5075/ UN1.P.II/Dit-Lit/PT.01.01/2023). This manuscript is part of the thesis by IM under the guidance of TJ and the team.
RESPONSIBLE EDITOR
Piotr Iwaniuk
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (37)
1.
Ali A.M., Awad M.Y.M., Hegab S.A., Gawad A.M.A.E., Eissa M.A. 2021. Effect of potassium solubilizing bacteria (Bacillus cereus) on growth and yield of potato. Journal of Plant Nutrition 44 (3): 411420. DOI: 10.1080/01904167.2020.1822399.
 
2.
Amallia R., Suryanti, Joko T. 2023. The potential of Rhizophagus intraradices, Bacillus thuringiensis Bt BMKP and silica for anthracnose disease control in shallot. Caraka Tani: Journal of Sustainable Agriculture 38 (2): 433446. DOI: 10.20961/carakatani.v38i2.76536.
 
3.
Arsène N.M.S., Dorice N.D., Brigitte K.M.L., Severin T.N., Lambert S.M., Anne N.N.R. 2023. Antagonistic fluorescent Pseudomonads: rhizobacteria with suppressive and plant growth promoting properties against Phytophthora colocasiae, the causal agent of taro leaf blight. Journal of Plant Protection Research 63 (3): 350365. DOI: 10.24425/jppr.2023.146875.
 
4.
Artanti H., Joko T., Suryanti. 2023. Diversity and community structure of rhizobacteria in shallot treated with Rhizophagus intraradices and Trichoderma asperelum. Biodiversitas 24 (11): 62486255.
 
5.
Bonani J.P., Fereres A., Garzo E., Miranda M.P., Appezzato-Da-Gloria B., Lopes J.R.S. 2009. Characterization of electrical penetration graphs of the Asian citrus psyllid, Diaphorina citri, in sweet orange seedlings. Entomologia Experimentalis et Applicata 134 (1): 3549. DOI: 10.1111/j.1570-7458.2009.00937.x.
 
6.
Bidima M.G.S., Chtaina N., Ezzahiri B., El Guilli M., Barakat I., El Kamli T. 2022. Antifungal activity of bioactive compounds produced by the endophyte Bacillus velezensis NC318 against the soil borne pathogen Sclerotium rolfsii Sacc. Journal of Plant Protection Research 62 (4): 326333. DOI: 10.24425/jppr.2022.142139.
 
7.
Cen Y., Yang C., Holford P., Beattie G.A.C., Spooner-Hart R.N., Liang G., Deng X. 2012. Feeding behaviour of the Asiatic citrus psyllid, Diaphorina citri, on healthy and huanglongbing-infected citrus. Entomologia Experimentalis et Applicata 143 (1): 1322. DOI: https://doi.org/10.1111/j.1570....
 
8.
Cichoka E., Goszczyński W., Lubiarz M. 2015. Chemical and physiology changes caused by aphids feeding on their host plants. Journal of Entomology 84: 233248. DOI: 10.1515/pjen-2015-0020.
 
9.
de Oliveira Dorta S., Balbinotte J., Monnerat R., Lopes J.R.S., da Cunha J., Zanardi O.Z., de Miranda M.P., Machado M.P., de Freitas‐Astúa J. 2018. Selection of Bacillus thuringiensis strains in citrus and their pathogenicity to Diaphorina citri (Hemiptera: Liviidae) nymphs. Insect Science 27: 519530. DOI: 10.1111/1744-7917.12654.
 
10.
Dong W., Liu H., Ning Z., Bian Z., Zeng L., Xie D. 2023. Inoculation with Bacillus cereus DW019 modulates growth, yield and rhizospheric microbial community of cherry tomato. Agronomy 13: 1458. DOI: https://doi.org/10.3390/agrono....
 
11.
Elsharkawy M.M., Almasoud M., Alsulaiman Y.M., Baeshen R.S., Elshazly H., Kadi R.H., Hassan M.M., Shawer R. 2022. Efficiency of Bacillus thuringiensis and Bacillus cereus against Rhynchophorus ferrugineus. Insects 13 (10): 905. DOI: https://doi.org/10.3390/insect....
 
12.
Fira D., Dimkic L., Beric T., Lozo J., Stankovic S. 2018. Biological control of plant pathogens by Bacillus species. Journal of Biotechnology 285: 4455. DOI: 10.1016/j.jbiotec.2018.07.044.
 
13.
Gabriel D., Gottwald T., Lopes S.A., Wulff N.A. 2020. Bacterial pathogens of citrus: citrus cancer, citrus variegated chlorosis and Huanglongbing. Woodhead Publishing, Cambridge: 371389. DOI: 10.1016/B978-0-12-812163-4.00018-8.
 
14.
Gaffar M.B.A.B., Pritchard J., Lyod B. 2016. Brown planthopper (N. lugens Stal.) feeding behavior on rice germplasm as indicator of resistance. Plos One 6 (7): 113. DOI: https://doi.org/10.1371/journa....
 
15.
Hapsoh, Dini I.R., Wawan, Wulandari M. 2022. Application of Bacillus cereus bioferilizer formulation of soybean (Glycine max L. Merril) growth and yield support sustainable agriculture on peatland. IOP Conference Series Earth and Environmental Science 977 (1): 012022. DOI: 10.1088/1755-1315/977/1/012022.
 
16.
Harun-Or-Rashid M., Kim H.J., Yeom S.I, Yu H.A., Manir M.M., Moon S.S., Kang Y.J., Chung Y.R. 2018. Bacillus velezensis YC7010 enhances plant defenses against brown planthopper through transcriptomic and metabolic changes in rice. Frontiers in Plant Science 9: 1904. DOI: 10.3389/fpls.2018.01904.
 
17.
Henry G., Deleu M., Jourdan E., Thonart P., Ongena M. 2011. The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defense responses. Cellular Microbiology 13 (11): 1824–1837. DOI: 10.1111/j.1462-5822.2011.01664.x.
 
18.
Hong-xing X., Ya-jun Y., Yan-hui L., Xu-song Z., Jun-ce T., Feng-xiang L. 2017. Sustainable management of rice insect pests by non-chemical insecticide technologies in China. Rice Science 24 (2): 61–72. DOI: https://dx.doi.org/10.1016/j.r....
 
19.
Ilmiah H.H., Sulistyaningsih E., Joko T. 2021. Fruit morphology, antioxidant activity, total phenolic and flavonoid contents of Salacca zalacca (Gaertner) Voss by applications of goat manures and Bacillus velezensis B-27. Caraka Tani: Journal of Sustainable Agriculture 36 (2): 270–282. DOI: https://doi.org/10.20961/carak....
 
20.
Johnston N., Stansly P.A., Stelinski L.L. 2019. Secondary hosts of the Asian citrus psyllid, Diaphorina citri Kuwayama: Survivorship and preference. Journal of Applied Entomology 143 (9): 921–928. DOI: https://dx.doi.org/10.1111/jen....
 
21.
Kulkova I., Dobrzynski J., Kowalczyk P., Belzecki G., Kramkowski K. 2023. Plant growth promotion using Bacillus cereus. International Journal of Molecular Sciences 24 (11): 9759. DOI: https://doi.org/10.3390/ijms24....
 
22.
Lei H., van Lenteren J.C., Tjallingii W.F. 1999. Analysis of resistance in tomato and sweet pepper against the greenhouse whitefly using electrically monitored and visually observed probing and feeding behavior. Entomologia Experimentalis et Applicata 92: 299–309. DOI: https://doi.org/10.1046/j.1570....
 
23.
Luo X., Yen A.L., Powell K.S., Wu F., Wang Y., Zeng L., Yang Y., Cen Y. 2015. Feeding behavior of Diaphorina citri (Hemiptera: Liviidae) and its acquisition of ‘Candidatus Liberibacter asiaticus’, on Huanglongbing-infected Citrus reticulata leaves of several maturity stages. Florida Entomologist 98 (1): 186–192. DOI: https://dx.doi.org/10.1653/024....
 
24.
Ma W., Pang Z., Huang X., Xu J., Pandey S.S., Li J., Achor D.S., Vasconcelos F.N.C., Hendrich C., Huang Y., Wang W., Lee D., Stanton D., Wang N. 2022. Citrus huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin. Nature Communications 13 (529): 1–13. DOI: https://doi.org/10.1038/s41467....
 
25.
Montlor C.B., Tjallingii W.F. 1989. Stylet penetration by two aphid species on susceptible and resistance lettuce. Entomologia Experimentalis et Applicata 52 (2): 103–111. DOI: https://doi.org/10.1111/j.1570....
 
26.
Munir S., Li Y., He P., Cui W., Wu Y., Li X., Li Q., Zhang S., Xiong Y. 2022. Defeating Huanglongbing pathogen Candidatus Liberibacter asiaticus with indigenous citrus endophyte Bacillus subtilis L1-21. Frontiers in Plant Science 12: 789065. DOI: https://doi.org/10.3389/fpls.2....
 
27.
Navitasari L., Joko T., Murti R.H., Arwiyanto, T. 2020. Rhizobacterial community structure in grafted tomato plants infected by Ralstonia solanacearum. Biodiversitas 21 (10): 4888–4895. DOI: https://doi.org/10.13057/biodi....
 
28.
Park Y.G., Mun B.G., Kang S.M., Hussain A., Shahzad R., Seo C.W., Kim A.Y., Lee S.U., Oh K.Y., Lee D.Y., Lee I.J., Yun B.W. 2017. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One 12 (3): e0173203. DOI: https://doi.org/10.1371/journa....
 
29.
Pieterse C.M.J., Van der Does D., Zamioudis C., Leon-Reyes A., Van Wees S.C. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28: 489–521. DOI: https://doi.org/10.1146/annure....
 
30.
Rahma A.A., Suryanti, Somowiyarjo S., Joko T. 2019. Induced disease resistance and promotion of shallot growth by Bacillus velezensis B-27. Pakistan Journal of Biological Science 23: 1113–1121. DOI: https://scialert.net/abstract/....
 
31.
Rodrigues J.D.B., Moreira A.S., Stuchi E.S., Bassanezi R.B., Laranjeira F.F., Girardi E.A. 2020. Huanglongbing incidence, canopy volume, and sprouting dynamics of ‘Valencia’ sweet orange grafted onto 16 rootstocks. Tropical Plant Pathology 45: 611–619. DOI: https://dx.doi.org/10.1007/s40....
 
32.
Soffan A., Aldawood A.S. 2015. Electrical penetration graph monitored feeding behavior of cowpea aphid, Aphis craccivora Koch. (Hemiptera: Aphididae), on faba bean, Vicia faba L. (Fabaceae), cultivars. Turkish Journal Entomology 39 (4): 401–411. DOI: https://doi.org/10.16970/ted.1....
 
33.
Tjallingii W.F. 1978. Electronic recording of penetration behavior by aphids. Entomologia Experimentalis et Applicata 24 (3): 721–730. DOI: https://doi.org/10.1111/j.1570....
 
34.
Tsotetsi T., Nephali L., Malebe M., Tugizimana F. 2022. Bacillus for plant growth promotion and stress resilience: what have we learned? Plants 11: 1–23. DOI: https://doi.org/10.3390/plants....
 
35.
Widyaningsih S., Utami S.N.H., Joko T., Subandiyah S. 2019. Plant response and huanglongbing disease development against heat treatments on ‘Siam Purworejo’ (Citrus nobilis (lour)) and ‘Nambangan’ (C. maxima (burm.) merr.) under field condition. Archives of Phytopathology and Plant Protection 52: 259–276. DOI: https://dx.doi.org/10.1080/032....
 
36.
Xu Y.B., Chen M., Zhang Y., Wang M., Wang Y., Huang Q.B., Wang X., Wang G. 2014. The phosphotransferase system gene ptsI in the endophytic bacterium Bacillus cereus is required for biofilm formation, colonization, and biocontrol against wheat sharp eyespot. FEMS Microbiology Letters 354 (2): 142–152. DOI: https://doi.org/10.1111/1574-6....
 
37.
Zhao D., Zalucki M.P., Guo R., Fang Z., Shen W., Zhang L., Liu B. 2016. Oviposition and feeding avoidance in Helicoverpa armigera (Hübner) against transgenic Bt cotton. Journal of Applied Entomology 140 (9): 715–724. DOI: https://doi.org/10.1111/jen.12....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top