ORIGINAL ARTICLE
The effect of ground cover plants in apple orchards on soil-dwelling Collembola
,
 
,
 
,
 
,
 
 
 
More details
Hide details
1
Department of Plant Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
 
2
Department of Horticulture, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
 
These authors had equal contribution to this work
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2024-10-07
 
 
Acceptance date: 2024-11-26
 
 
Online publication date: 2025-06-27
 
 
Corresponding author
Olena Ewa Niszczak   

Department of Plant Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
 
 
 
HIGHLIGHTS
  • Ground cover plants can enhance the Collembola abundance and diversity in orchards
  • Collembola were significantly higher in soil with ground cover plants than fallow
  • Collembola abundance was the highest in strips with Tagetes patula and Festuca ovina
  • Cover crops enhanced soil biodiversity
KEYWORDS
TOPICS
ABSTRACT
Ground cover plants in orchards can effectively improve soil quality. One factor determining soil health is the presence of fauna, including mesofauna, which play a crucial role in soil ecosystems. However, the relationship between ground cover and Collembola assemblages in orchards remains underexplored. This study investigated how different ground cover plants sown in rows of apple trees influence the abundance and diversity of Collembola. Conducted at the Research Station of Wrocław University of Environmental and Life Sciences, Poland, the experiment utilized three cover species: Tagetes patula, Festuca ovina, and Agrostis capillaris, with fallow plots serving as control samples. Soil samples were collected over 2 years (2015–2016) to assess springtails richness and species composition. Results indicated that springtails were significantly more abundant in soils managed with ground cover plants than in conventionally managed fallow stands. Notably, the highest mean Collembola numbers were recorded in strips planted with T. patula and F. ovina. The springtail communities were primarily dominant in each of the treatments by two eudaphic species, Mesaphorura macrochaeta and Hypogastrura assimilis. These findings underscore the importance of cover crops in sustainable agriculture by reducing herbicide reliance, enhancing soil aeration, improving soil fertility through organic matter, and fostering biodiversity of soil biota.
RESPONSIBLE EDITOR
Andrea Toledo
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (67)
1.
Altmanninger A., Brandmaier V., Spangl B., Gruber E., Takács E., Mörtl M., Klátyik S., Székács A., Zaller J.G. 2023. Glyphosate-based herbicide formulations and their relevant active ingredients affect soil springtails even five months after application. Agriculture 13: 2260. DOI: 10.3390/agriculture13122260.
 
2.
Anthony M.A., Bender S.F., van der Heijden M.G. 2023. Enumerating soil biodiversity. Proceedings of the National Academy of Sciences of the United States of America 120: e2304663120. DOI: 10.1073/pnas.2304663120.
 
3.
Arenhardt T.C.P., Vitorino M.D., Martins S.V. 2021. Insecta and Collembola as bioindicators of ecological restoration in the Ombrophilous Dense Forest in Southern Brasil. Floresta e Ambiente 28: e20210008. DOI: 10.1590/2179-8087-floram-2021-0008.
 
4.
Aupic-Samain A., Baldy V., Delcourt N., Krogh P.H., Gauquelin T., Fernandez C., Santonja M. 2020. Water availability rather than temperature control soil fauna community structure and prey-predator interactions. Functional Ecology 35: 1550–1559. DOI: 10.1111/1365-2435.13745.
 
5.
Babita S.S., Ahmed N., Thakur M. 2020. Organic farming: a holistic approach towards sustainable fruit production. European Journal of Pharmaceutical and Medical Research 2: 108–115.
 
6.
Beaumelle L., Tison L., Eisenhauer N., Hines J., Malladi S., Pelosi C., Thouvenot L., Phillips H.R.P. 2023. Pesticide effects on soil fauna communities–a meta‐analysis. Journal of Applied Ecology 60: 1239–1253. DOI: 10.1111/1365-2664.14437.
 
7.
Beet C.R., Hogg I.D., Cary S.C., McDonald I.R., Sinclair B.J. 2022. The resilience of polar Collembola (springtails) in a changing climate. Current Research in Insect Science 2: 100046. DOI:10.1016/j.cris.2022.100046.
 
8.
Betancur-Corredor B., Lang B., Russell D.J. 2022. Reducing tillage intensity benefits the soil micro- and mesofauna in a global meta-analysis. European Journal of Soil Science 73: e13321. DOI: 10.1111/ejss.13321.
 
9.
Bhattacharyya K., Kumari P. 2023. Springtails and their role in maintaining soil health. Vigyan Varta 4: 20–22.
 
10.
Birkhofer K., Addison M.F., Arvidsson F., Bazelet C., Bengtsson J., Booysen R., Conlong D., Haddad C., Janion-Scheepers C., Kapp C., Lindborg R., Louw S., Malan A.P., Storey S.G., Swart W.J., Addison P. 2019. Effects of ground cover management on biotic communities, ecosystem services and disservices in organic deciduous fruit orchards in South Africa. Frontiers in Sustainable Food Systems 3: 107. DOI: 10.3389/fsufs.2019.00107.
 
11.
Bokova A.I., Panina K.S., Dridiger V.K., Kuznetsova N.A., Potapov M.B. 2023. The amount of mulch increases the abundance, and its composition the species diversity of springtails in crop rotation on chernozem soils. Soil Organisms 95: 227–238. DOI: 10.25674/so95iss3id333.
 
12.
Cao Q., Shen Y.Y., Wang Z.K., Zhang X.M., Xuan X. 2016. Effects of living mulch on soil physical and chemical properties in orchards: a review. Acta Prataculturae Sinica 25: 180–188. DOI: 10.11686/cyxb2015500.
 
13.
Capelli S.L., Domeignoz-Horta L.A., Loaiza V., Laine A.L. 2022. Plant biodiversity promotes sustainable agriculture directly and via belowground effects. Trends in Plant Science 27: 674–687. DOI: 10.1016/j.tplants.2022.02.003.
 
14.
Cezar R.M., Vezzani F.M., Schwiderke D.K., Gaiad S., Brown G.G., Seoane C.E.S., Froufe L.C.M. 2015. Soil biological properties in multistrata successional agroforestry systems and in natural regeneration. Agroforestry Systems 89: 1035–1047. DOI: 10.1007/s10457-015-9833-7.
 
15.
Chauvat M., Perez G., Ponge J.F. 2014. Foraging patterns of soil springtails are impacted by food resources. Applied Soil Ecology 82: 72–77. DOI: 10.1016/j.apsoil.2014.05.012.
 
16.
Chen X., Liu Y., Liu H., Wang H., Yang D., Huangfu C. 2015. Impacts of four invasive Asteraceae on soil physico-chemical properties and AM fungi community. American Journal of Plant Sciences 6: 2734–2743. DOI: 10.4236/ajps.2015.617274.
 
17.
Chowdhury S., Dubey V.K., Choudhury S., Das A., Jeengar D., Sujatha B., Kumar A., Kumar N., Semwal A., Kumar V. 2023. Insects as bioindicator: a hidden gem for environmental monitoring. Frontiers in Environmental Science 11: 1146052. DOI: 10.3389/fenvs.2023.1146052.
 
18.
Cole L., Staddon P.L., Sleep D., Bardgett R.D. 2004. Soil animals influence microbial abundance, but not plant-microbial competition for soil organic nitrogen. Functional Ecology 18: 631–640. DOI: 10.1111/j.0269-8463.2004.00894.x.
 
19.
de Pedro L., Perera-Fernández L.G., López-Gallego E., Pérez-Marcos M., Sanchez J.A. 2020. The effect of cover crops on the biodiversity and abundance of ground-dwelling arthropods in a Mediterranean pear orchard. Agronomy 10: 580. DOI: 10.3390/agronomy10040580.
 
20.
Devi V.V.S., Raj S.K., Sreekumar A., Sherafudeen H. 2023. A review on live mulch for better agriculture. Environment and Ecology 41: 2452–2459. DOI: 10.60151/envec/ZQQJ1938.
 
21.
Dradrach A., Karczewska A., Szopka K. 2020. Arsenic uptake by two tolerant grass species: Holcus lanatus and Agrostis capillaris growing in soils contaminated by historical mining. Plants 9: 980. DOI: 10.3390/plants9080980.
 
22.
Drumea V., Dumitriu B., Voinicu I.B., Olariu L. 2022. Study on thiophenes extraction efficacy from Tagetes patula L. Annals of the Academy of Romanian Scientists Series on Biological Sciences 11: 81–93. DOI: 10.56082/annalsarscibio.2022.2.81.
 
23.
Dudás P., Menyhárt L., Gedeon C., Ambrus G., Tóth F. 2016. The effect of hay mulching on soil temperature and the abundance and diversity of soil-dwelling arthropods in potato fields. European Journal of Entomology 113: 456–461. DOI: 10.14411/eje.2016.059.
 
24.
Fabrick J.A., Yool A.J., Spurgeon D.W. 2020. Insecticidal activity of marigold Tagetes patula plants and foliar extracts against the hemipteran pests, Lygus hesperus and Bemisia tabaci. PLoS ONE 15: e0233511. DOI: 10.1371/journal.pone.0233511.
 
25.
Fang L., Zhang Y., Zhang Y., Yang Y., Zhang X., Wang X., Shi X. 2021. The effects of ground cover management on fruit yield and quality: a meta-analysis. Archives of Agronomy and Soil Science 68: 1890–1902. DOI: 10.1080/03650340.2021.1937607.
 
26.
Fuji S., Saitoh S., Takeda H. 2014. Effects of rhizospheres on the community composition of Collembola in a temperate forest. Applied Soil Ecology 83: 109–115. DOI: 10.1016/j.apsoil.2014.03.018.
 
27.
Gongalla A.R. 2020. Literature review of Tagetes patula. Journal of Pharmacognosy and Phytochemistry 8: 1–3.
 
28.
Gruss I., Twardowski J. 2016. The assemblages of soil-dwelling springtails (Collembola) in winter rye under long-term monoculture and crop rotation. Zemdirbyste 103: 159–166. DOI: 10.13080/z-a.2016.103.021.
 
29.
Gruss I., Twardowski J., Matkowski K., Jurga M. 2022. Impact of Collembola on the winter wheat growth in soil infected by soil-borne pathogenic fungi. Agronomy 12: 1599. DOI: 10.3390/agronomy12071599.
 
30.
Hanisch J., Engell I., Linsler D., Scheu S., Potthoff M. 2022. The role of Collembola for litter decomposition under minimum and conventional tillage. Journal of Plant Nutrition and Soil Science 185: 529–538. DOI: 10.1002/jpln.202200077.
 
31.
Harta I., Simon B., Vinogradov S., Winkler D. 2020. Collembola communities and soil conditions in forest plantations established in an intensively managed agricultural area. Journal of Forestry Research 32: 1819–1832. DOI: 10.1007/s11676-020-01238-z.
 
32.
Hartwig N.L., Ammon H.U. 2002. Cover crops and living mulches. Weed Science 50: 688–699. DOI: 10.1614/0043-1745(2002)050[0688:AIACCA]2.0.CO;2.
 
33.
Hopkin S.P. 2007. A Key to the Springtails (Collembola) of Britain and Ireland. Field Studies Council (AIDGAP Project), 245 pp.
 
34.
Innocenti G., Sabatini M.A. 2018. Collembola and plant pathogenic, antagonistic and arbuscular mycorrhizal fungi: a review. Bulletin of Insectology 71: 71–76.
 
35.
Jasiński M., Twardowski J., Tendziagolska E. 2016. The occurrence of soil mesofauna in organic crops. Journal of Research and Applications in Agricultural Engineering 61: 193–199.
 
36.
Ji X., Wang J., Dainese M., Zhang H., Chen Y., Cavalieri A., Jiang J., Wan N. 2022. Ground cover vegetation promotes biological control and yield in pear orchards. Journal of Applied Entomology 146: 262–271. DOI: 10.1111/jen.12965.
 
37.
Joimel S., Schwartz C., Bonfanti J., Hedde M., Krogh P.H., Pérès G., Pernin C., Rakoto A., Salmon S., Santorufo L., Cortet J. 2021. Functional and taxonomic diversity of Collembola as complementary tools to assess land use effects on soils biodiversity. Frontiers in Ecology and Evolution 9: 630919. DOI: 10.3389/fevo.2021.630919.
 
38.
Karakas M., Bolukbasi E. 2019. A review: using marigolds (Tagetes spp.) as an alternative to chemical nematicides for nematode management. International Journal of Advanced Engineering, Management and Science 5: 556–560. DOI: 10.22161/ijaems.59.3.
 
39.
Kazemi H., Klug H., Kamkar B. 2018. New services and roles of biodiversity in modern agroecosystems: a review. Ecological Indicators 93: 1126–1135. DOI: 10.1016/j.ecolind.2018.06.018.
 
40.
Lagendijk D.D.G., Cueva-Arias D., Van Oosten A.R., Berg M.P. 2022. Impact of three co-occurring physical ecosystem engineers on soil Collembola communities. Oecologia 198: 1085–1096. DOI: 10.1007/s00442-022-05152-5.
 
41.
Li H., Hill N., Wallace J. 2023. A perennial living mulch system fosters a more diverse and balanced soil bacterial community. PLoS ONE 18: e0290608. DOI: 10.1371/journal.pone.0290608.
 
42.
Ma C., Nie R., Du G. 2023. Responses of soil collembolans to land degradation in a black soil region in China. International Journal of Environmental Research and Public Health 20: 4820. DOI: 10.3390/ijerph20064820.
 
43.
Machado J., Oliveira Filho L.C., Santos J., Paulino A., Baretta D. 2019. Morphological diversity of springtails (Hexapoda: Collembola) as soil quality bioindicators in land use systems. Biota Neotropica 19: e20180618. DOI: 10.1590/1676-0611-BN-2018-0618.
 
44.
Mairata A., Labarga D., Puelles M., Huete J., Portu J., Rivacoba L., Pou A. 2023. The organic mulches in vineyards exerted an influence on spontaneous weed cover and plant biodiversity. European Journal of Agronomy 151: 126997. DOI: 10.1016/j.eja.2023.126997.
 
45.
Manwaring M., Walter D., Stirling G.R. 2015. Microarthropods as predators of nematode pests in sugarcane soils: literature review and preliminary studies. Proceedings of the Australian Society of Sugar Cane Technology 37: 212–217.
 
46.
McDaniel M.D., Tiemann L.K., Grandy A.S. 2014. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications 24: 560–570. DOI: 10.1890/13-0616.1.
 
47.
Meena R.K., Meena R.S., Naik B.S.S.S., Meena B.L. and Meena S.C. 2020. Organic farming – concepts, principles, goals & as a sustainable agriculture: a review. International Journal of Chemical Studies, SP–8: 24–32. DOI: 10.22271/chemi.2020.v8.i4a.9812.
 
48.
Mia M.J., Furmanczyk E.M., Golian J., Kwiatkowska J., Malusá E., Neri D. 2021. Living mulch with selected herbs for soil management in organic apple orchard. Horticulturae 7: 59. DOI: 10.3390/horticulturae7030059.
 
49.
Miyazawa K., Tsuji H., Yamagata M., Nakano H., Nakamoto T. 2002. The effects of cropping systems and fallow managements on microarthropod populations. Plant Production Science 5: 257–265. DOI: 10.1626/pps.5.257.
 
50.
Mottin M.C., Seidel E.P., Fey E., Vanelli J., Alves A.L., Richart A., Frandoloso J.F., Anschau K.A., Francziskowski M.A. 2018. Biomass productivity and physical properties of the soil after cultivation of cover plant in the autumn and winter. American Journal of Plant Sciences 9: 775–788. DOI: 10.4236/AJPS.2018.94061.
 
51.
Murphy P.W. 1956. A modified funnel method for extracting soil meiofauna. Trans. p. 255–262. In: 6th Int. Congres of Soil Science, Paris, France.
 
52.
Nielsen U.N., Wall D.H., Six J. 2015. Soil biodiversity and the environment. Annual Review of Environment and Resources 40: 63–90. DOI: 10.1146/annurev-environ-102014-021257.
 
53.
Niemeyer J.C., de Santo F.B., Guerra N., Ricardo Filho A.M., Pech T.M. 2018. Do recommended doses of glyphosate-based herbicides affect soil invertebrates? Field and laboratory screening tests to risk assessment. Chemosphere 198: 154–160. DOI: 10.1016/j.chemosphere.2018.01.127.
 
54.
Peng H., Liang K., Luo H., Huang H., Luo S., Zhang A., Xu H., Xu F. 2021. A Bacillus and Lysinibacillus sp. bioaugmented Festuca arundinacea phytoremediation system for the rapid decontamination of chromium influenced soil. Chemosphere 283: 131186. DOI: 10.1016/j.chemosphere.2021.131186.
 
55.
Pereira J.L., Araújo T.A., Rodrigues-Silva N., Silva A.A., Picanço M.C. 2018. Edaphic entomofauna variation depending on glyphosate application in Roundup Ready soybean crops. Planta Daninha 36: e018171328. DOI: 10.1590/s0100-83582018360100110.
 
56.
Pfingstmann A., Paredes D., Buchholz J., Querner P., Bauer T., Strauss P., Kratschmer S., Winter S., Zaller J. 2019. Contrasting effects of tillage and landscape structure on spiders and springtails in vineyards. Sustainability 11: 2095. DOI: 10.3390/su1102095.
 
57.
Pommeresche R., Løes A.K. 2014. Diversity and density of springtails (Collembola) in a grass-clover ley in North-west Norway. Norwegian Journal of Entomology 61: 165–179.
 
58.
Potapov A., Bellini B.C., Chown S.L., Deharveng L., Janssens F., Kováč L., Kuznetsova N., Ponge J.F., Potapov M., Querner P., Russell D., Sun X., Zhang F., Berg M.P. 2020. Towards a global synthesis of Collembola knowledge – challenges and potential solutions. Soil Organisms 92: 161–188. DOI: 10.25674/so92iss3pp161.
 
59.
Potapov A., Goncharov A.A., Tsurikov S.M., Tully T., Tiunov A.V. 2016. Assimilation of plant-derived freshly fixed carbon by soil collembolans: not only via roots? Pedobiologia 59: 189–193. DOI: 10.1016/j.pedobi.2016.07.002.
 
60.
Qian X., Gu J., Pan H., Zhang K., Sun W., Wang X., Gao H. 2015. Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. European Journal of Soil Biology 70: 23–30. DOI: 10.1016/j.ejsobi.2015.06.005.
 
61.
Rzeszowski K., Zadrożny P., Nicia P. 2017. The effect of soil nutrient gradients on Collembola communities inhabiting typical urban green spaces. Pedobiologia 64: 15–24. DOI: 10.1016/j.pedobi.2017.06.003.
 
62.
Skersiene A., Slepetiene A., Stukonis V., Norkeviciene E. 2024. Contributions of different perennial grass species and their roots’ characteristics to soil organic carbon accumulation. Sustainability 16: 6037. DOI: 10.3390/su16146037.
 
63.
Stavrianakis G., Sentas E., Stattegger S.R., Tscheulin T., Kizos T. 2024. Effect of olive grove’s understorey management on arthropod diversity. Agroecology and Sustainable Food Systems: 1–24. DOI: 10.1080/21683565.2024.2364739.
 
64.
Torres-Moya F., Dotor-Robayo M. 2020. Study of the effects of glyphosate application on Collembola populations under controlled conditions. Agronomía Colombiana 38: 398–405. DOI: 10.15446/agron.colomb.v38n3.85626.
 
65.
Vanhée B., Devigne C. 2018. Differences in Collembola species assemblages (Arthropoda) between spoil tips and surrounding environments are dependent on vegetation development. Scientific Reports 8: 18067. DOI: 10.1038/s41598-018-36315-1.
 
66.
Woch M.W., Kapusta P., Steganowicz A.M. 2016. Variation in dry grassland communities along a heavy metals gradient. Ecotoxicology 25: 88–90. DOI: 10.1007/s10646-015-1569-7.
 
67.
Zhang P., Bonte D., De Deyn G., Vandegehuchte M.L. 2023. Plant clustering generates negative plant-soil feedback without changing the spatial distribution of soil fauna. Web Ecology 23: 1–15. DOI: 10.5194/we-23-1-2023.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top