ORIGINAL ARTICLE
Synergistic use of iron nanofertilizers and biotic elicitors to induce defensive volatile organic compound emissions from Brassica napus
More details
Hide details
1
Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
2
Department of Agronomy, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
3
Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
4
Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
5
Oncology Center of prof. F. Łukaszczyk in Bydgoszcz, Oncology Center, Bydgoszcz, Poland
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2024-02-28
Acceptance date: 2024-05-13
Online publication date: 2024-12-02
Corresponding author
Dariusz Piesik
Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
Journal of Plant Protection Research 2024;64(4):336-346
HIGHLIGHTS
- Methyl jasmonate induced larger emission of volatile organic compounds in comparison to methyl salicylate.
- The concentration of iron nanoparticles was found to have a significant influence on the plants’ reaction.
- The combination of elicitors and nanoparticles induced the highest emission of the plants’ volatile organic compounds.
KEYWORDS
TOPICS
ABSTRACT
for agricultural practices are needed. In recent years nanofertilizers and elicitors have been
investigated as methods to provide improved crop yield and quality. The potential of foliar
application of iron nanofertilizers, elicitors [methyl jasmonate (MeJA) or methyl salicylate
(MeSa)] and their combinations on the emission of volatile organic compounds (VOCs),
have been evaluated for Brassica napus. The combined application of nanofertilizers and
elicitors was found to result in an increase of VOC emissions by B. napus in comparison
to their individual usage. The highest VOC emissions were observed at the time point
24 hours after the application of a 10 μg · ml–1 concentration of nanofertilizers and MeJa.
To our knowledge, this is the first time that combinations of nanofertilizers and elicitors
have been applied to plants to determine their response on the emission of plant defense
volatiles.
ACKNOWLEDGEMENTS
We wish to thank Chris A. Mayhew for help in preparing
the article. The authors declare no conflict of
interest in the work reported in this paper.
RESPONSIBLE EDITOR
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (37)
1.
Abdel-Aziz H.M.M., Hasaneen M.N.A., Aya M.O. 2018. Foliar application of nano chitosan NPK fertilizer improves the yield of wheat plants grown on two different soils. Egyptian Journal of Experimental Biology 14: 63–72. DOI: 10.5455/egyjebb.20180106032701.
2.
Allmann S., Späthe A., Bisch-Knaden S., Kallenbach M., Reinecke A., Sachse S., Baldwin I.T., Hansson B.S. 2013. Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition. Elife 2013: 1–23. DOI: 10.7554/eLife.00421.
3.
Ameye M., Allmann S., Verwaeren, J., Smagghe G., Haesaert G., Schuurink R.C., Audenaert K. 2018. Green leaf volatile production by plants: A meta-analysis. New Phytologist 220: 666–683. DOI:
https://doi.org/10.1111/nph.14....
4.
Bocianowski J., Majchrzak L. 2019. Analysis of Effects of Cover Crop and Tillage Method Combinations on the Phenotypic Traits of Spring Wheat (Triticum Aestivum L.) Using Multivariate Methods. Applied Ecology and Environmental Research 17: 15267–15276. DOI: 10.15666/aeer/1706_1526715276.
5.
Brosset A., Islam M., Bonzano S., Maffei M.E., Blande J.D. 2021. Exposure to (Z)-11-hexadecenal [(Z)-11-16:Ald] increases Brassica nigra susceptibility to subsequent herbivory. Scientific Reports 11: 13532–13543. DOI: 10.1038/s41598-021-93052-8.
6.
Cascone P., Iodice L., Maffei M.E., Bossi S., Arimura G., Guerrieri E. 2015. Tobacco overexpressing β-ocimene induces direct and indirect responses against aphids in receiver tomato plants. Journal of Plant Physiology 173: 28–32. DOI: 10.1016/j.jplph.2014.08.011.
7.
Chidawanyika F., Mudavanhu P., Nyamukondiwa C. 2012. Biologically based methods for pest management in agriculture under changing climates: challenges and future directions. Insects 3: 1171–1189. DOI: 10.3390/insects3041171.
8.
Copolovici L., Kännaste A., Pazouki L., Niinemets Ü. 2012. Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. Journal of Plant Physiology 169: 664–672. DOI: 10.1016/j.jplph.2011.12.019.
9.
Donley N. 2019. The USA lags behind other agricultural nations in banning harmful pesticides. Environmental Health 18: 1–12. DOI:10.1186/s12940-019-0488-0.
10.
Engelberth J., Engelberth M. 2020. Variability in the capacity to produce damage-induced aldehyde green leaf volatiles among different plant species provides novel insights into biosynthetic diversity. Plants 9: 1–14. DOI: 10.3390/plants9020213.
11.
Farghaly F.A., Al-Kahtany F.A., Hamada A.M., Radi A.A. 2023. Thiol, volatile and semi-volatile compounds alleviate the stress of zinc oxide nanoparticles of the pomegranate callus. Chemosphere 312: 137151. DOI:
https://doi.org/10.1016/j.chem....
12.
Gaffke A.M., Alborn H.T., Dudley T.L., Bean D.W. 2021. Using chemical ecology to enhance weed biological control. Insects 12: 1–16. DOI: 10.3390/insects12080695.
13.
Hatami M., Kariman K., Ghorbanpour M. 2016. Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Science of The Total Environment 571: 275–291. DOI: 10.1016/j.scitotenv.2016.07.184.
14.
Islam S.M.F., Karim Z. 2020. World’s demand for food and water: The consequences of climate change. Integrated pest management. In: “Desalination – Challenges and Opportunities” (Farahani M.H.D.A., Vatanpour V., Taheri A., eds.). BoD–Books on Demand. DOI: 10.5772/intechopen.77449.
15.
Jamiołkowska A. 2020. Natural compounds as elicitors of plant resistance against diseases and new biocontrol strategies. Agronomy 10: 173. DOI: 10.3390/agronomy10020173.
16.
Jiang Y., Ye J., Liu B., Rikisahedew J.J., Tosens T., Niinemets Ü. 2022. Acute methyl jasmonate exposure results in major bursts of stress volatiles, but in surprisingly low impact on specialized volatile emissions in the fragrant grass Cymbopogon flexuosus. Journal of Plant Physiology 274: 153721–153732. DOI: 10.1016/j.jplph.2022.153721.
17.
Jośko I., Oleszczuk P., Skwarek E. 2017. Toxicity of combined mixtures of nanoparticles to plants. Journal of Hazardous Materials 331: 200–209. DOI: 10.1016/j.jhazmat.2017.02.028.
18.
Khalid U., Sher F., Noreen S., Lima E.C., Rasheed T., Sehar S., Amami R. 2022. Comparative effects of conventional and nano-enabled fertilizers on morphological and physiological attributes of Caesalpinia bonducella plants. Journal of the Saudi Society of Agricultural Sciences 21: 61–72. DOI: 10.1016/j.jssas.2021.06.011.
19.
Lecube M.L., Noriega G.O., Santa Cruz D.M., Tomaro M.L., Batlle A., Balestrasse K.B. 2014. Indole acetic acid is responsible for protection against oxidative stress caused by drought in soybean plants: the role of heme oxygenase induction. Redox Report 19: 242–250. DOI: 10.1179/1351000214Y.0000000095.
20.
Mithöfer A., Maffei M.E. 2016. General mechanisms of plant defense and plant toxins. p. 1–22. In: “Plant Toxins”. Springer.
21.
Nongbet A., Mishra A.K., Mohanta Y.K., Mahanta S., Ray M.K., Khan M., Baek K.H., Chakrabartty I. 2022. Nanofertilizers: A smart and sustainable attribute to modern agriculture. Plants 11: 1–20. DOI: 10.3390/plants11192587.
22.
Piesik D., Pańka D., Delaney K.J., Skoczek A., Lamparski R., Weaver D.K. 2011. Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.). Journal of Plant Physiology 168: 878–886. DOI: 10.1016/j.jplph.2010.11.010.
23.
Ponzio C., Gols R., Pieterse C.M.J., Dicke M. 2013. Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Functional Ecology 27: 587–598. DOI: 10.1111/1365-2435.12035.
24.
Pramanik B., Sar P., Bharti R., Gupta R., Purkayastha S., Sinha S., Chattaraj S., Mitra D. 2023. Multifactorial role of nanoparticles in alleviating environmental stresses for sustainable crop production and protection. Plant Physiology and Biochemistry 201: 107831. DOI:
https://doi.org/10.1016/j.plap....
25.
Rahnamaie-Tajadod R., Goh H.H., Mohd Noor N. 2019. Methyl jasmonate-induced compositional changes of volatile organic compounds in Polygonum minus leaves. Journal of Plant Physiology 240: 152994. DOI: 10.1016/j.jplph.2019.152994.
26.
Scandiffio R., Geddo F., Cottone E., Querio G., Antoniotti S., Pia Gallo M., Maffei M.E., Bovolin P. 2020. Protective effects of (E)-β-caryophyllene (BCP) in chronic inflammation. Nutrients 12: 3273. DOI: 10.3390/nu12113273.
27.
Semida W.M., Abdelkhalik A., Mohamed G.F., Abd El-Mageed T.A., Abd El-Mageed S.A., Rady M.M., Ali E.F. 2021. Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants 10: 421. DOI:10.3390/plants10020421.
28.
Sharifi R., Ryu C.M. 2021. Social networking in crop plants: Wired and wireless cross-plant communications. Plant, Cell & Environment 44: 1095–1110. DOI:
https://doi.org/10.1111/pce.13....
29.
Sobhy I.S., Erb M., Lou Y., Turlings T.C.J. 2014. The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests. Philosophical Transactions of the Royal Society B: Biological Sciences 369: 1–10. DOI:10.1098/rstb.2012.0283.
30.
Sohair E.E.D., Abdall A.A., Amany A.M., Faruque H.M.D., Houda R.A. 2018. Evaluation of Nitrogen, Phosphorus and Potassium Nano-Fertilizers on Yield, Yield Components and Fiber Properties of Egyptian Cotton (Gossyppium Barbadense L.). Journal of Plant Sciences and Crop Protection 1 (3): 302.
31.
Song G.C., Ryu C.M. 2018. Evidence for volatile memory in plants: boosting defence priming through the recurrent application of plant volatiles. Molecular Cells 41: 724–732. DOI: 10.14348/molcells.2018.0104.
32.
Tripathi D., Singh M., Pandey-Rai S. 2022. Crosstalk of nanoparticles and phytohormones regulate plant growth and metabolism under abiotic and biotic stress. Plant Stress 6: 100107. DOI: 10.1016/j.stress.2022.100107.
33.
Wang Z., Yue L., Dhankher O.P., Xing B. 2020. Nano-enabled improvements of growth and nutritional quality in food plants driven by rhizosphere processes. Environment International 142: 105831. DOI: 10.1016/j.envint.2020.105831.
34.
Wenda-Piesik A. 2011. Volatile organic compound emissions by winter wheat plants (Triticum aestivum L.) under Fusarium spp. Infestation and various abiotic conditions. Polish Journal of Environmental Studies 20 (5): 1335–1342.
35.
Wenda-Piesik A., Piesik D., Nowak A., Wawrzyniak M. 2016. Tribolium confusum responses to blends of cereal kernels and plant volatiles. Journal of Applied Entomology 140: 558–563. DOI: 10.1111/jen.12284.
36.
Wrońska-Pilarek D., Szkudlarz P., Bocianowski J. 2018. Systematic importance of morphological features of pollen grains of species from Erica (Ericaceae) genus. PLoS ONE 13: 1–31. DOI: 10.1371/journal.pone.0204557.
37.
Wu H., Li Z. 2022. Recent advances in nano-enabled agriculture for improving plant performance. Crop Journal 10: 1–12. DOI: 10.1016/j.cj.2021.06.002.