ORIGINAL ARTICLE
Sweet alyssum (Lobularia maritima L.) enhances aphidophagous insects and increases yield in field broad bean – agronomic aspects
 
More details
Hide details
1
Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
 
2
Faculty of Agriculture and Economics, University of Agriculture in Krakow, Krakow, Poland
 
3
Faculty of Food Technology, University of Agriculture in Krakow, Krakow, Poland
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2024-03-13
 
 
Acceptance date: 2024-04-30
 
 
Online publication date: 2024-12-02
 
 
Corresponding author
Barbara Lucyna Domagała   

Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
 
 
Journal of Plant Protection Research 2024;64(4):307-322
 
HIGHLIGHTS
  • The introduction of the sweet alyssum into the broad bean cultivation resulted in a decrease in the number of black bean aphids
  • The presence of L. maritima contributed to the increase in the number of hoverflies and ladybirds
  • Lack of the competitiveness of sweet alyssum in relation to broad bean allows using the standard spacing (50 cm) between the rows.
KEYWORDS
TOPICS
ABSTRACT
Sweet alyssum (Lobularia maritima L.) is known as an insectary plant with great potential in enhancing the occurrence and diversity of beneficial insects in different crops. However, agronomic aspects of the introduction of this plant are still not fully recognized. Field studies aimed at assessing entomological relationships in the quasi-coordinate system focused on evaluating the impact of sweet alyssum as a companion plant in broad bean (Vicia faba L.) cultivation on the prevalence of the black bean aphid (Aphis fabae Scop.) and its natural enemies. It was also sought to determine the optimal row spacing for broad beans when introducing an additional plant between the rows. A 3-year field experiment involved various row spacings for broad beans: 50 cm, 65 cm, and 80 cm, with a control group at a 50 cm row spacing representing conventional cultivation, and another group with standard chemical pest protection as a reference. The results indicated that using sweet alyssum as a companion plant significantly reduced the black bean aphid population. It was comparable to the effect of chemical pest control. This companion planting also considerably increased the population of natural enemies of the black bean aphid, including hoverfly eggs and larvae, as well as various stages of ladybirds, particularly the adult stage. Sweet alyssum contributed to a reduced aphid-to-predator ratio, leading to a significant decrease in black bean aphid numbers and an earlier colonization of aphids by hoverflies and ladybirds on broad bean plants. In summary, sweet alyssum has the potential to effectively decrease black bean aphid occurrences, particularly on ecological farms. Notably, sweet alyssum’s competitiveness with broad beans and the different row spacing had minimal impact on predator occurrence, eliminating the need to increase standard row spacing for this plant.
RESPONSIBLE EDITOR
Anna Tratwal
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (52)
1.
Akinci S., Bueyuekkeskin T., Eroğlu A., Erdoğan B.E. 2009. The effect of humic acid on nutrient composition in broad bean (Vicia faba L.) roots. Notulae Scientia Biologicae 1 (1): 81–87. DOI: https://doi.org/10.15835/nsb11....
 
2.
Al-Doghairi M.A., Cranshaw W.S. 1999. Surveys on visitation of flowering landscape plants by common biological control agents in Colorado. Journal of the Kansas Entomological Society 72 (2): 190–196.
 
3.
Almogdad M., Semaškienė R. 2021. The occurrence and control of black bean aphid (Aphis fabae Scop.) in broad bean. Zemdirbyste-Agriculture 108 (2): 165–172. DOI: https://doi.org/10.13080/z-a.2....
 
4.
Amiri-Jami A.R., Sadeghi-Namaghi H. 2014. Responses of Episyrphus balteatus DeGeer (Diptera:Syrphidae) in relations to prey density and predator size. Journal of Asia-Pacific Entomology 17: 207–211. DOI: https://doi.org/10.1016/j.aspe....
 
5.
Aparicio Y., Gabarra R., Arnó J. 2018. Attraction of Aphidius ervi (Hymenoptera: Braconidae) and Aphidoletes aphidimyza (Diptera: Cecidomyiidae) to sweet alyssum and assessment of plant resources effects on their fitness. Journal of Economic Entomology 111 (2): 533–541. DOI: https://doi.org/10.1093/jee/to....
 
6.
Apaydin H., Ertan S., Özekmekçi S. 2000. Broad bean (Vicia faba) - A natural source of L‐dopa-Prolongs “on” periods in patients with Parkinson's disease who have “on–off” fluctuations. Movement Disorders 15 (1): 164–166. DOI: https://doi.org/10.1002/1531-8....
 
7.
Basedow T., Hua L., Aggarwal N. 2006. The infestation of Vicia faba L.(Fabaceae) by Aphis fabae (Scop.) (Homoptera: Aphididae) under the influence of Lamiaceae (Ocimum basilicum L. and Satureja hortensis L.). Journal of Pest Science 79 (3): 149–154. DOI: https://doi.org/10.1007/s10340....
 
8.
Bieńkowski A.O. 2018. Key for identification of the ladybirds (Coleoptera: Coccinellidae) of European Russia and Russian Caucasus (native and alien species). Zootaxa 4472 (2): 233–260. DOI: https://doi.org/10.11646/zoota....
 
9.
Boiteau G. 1984. Effect of planting date, plant spacing, and weed cover on populations of insects, arachnids, and entomophthoran fungi in potato fields. Environmental Entomology 13: 751–756. DOI: https://doi.org/10.1093/ee/13.....
 
10.
Booker R.H. 1963. Effect of sowing date and spacing on rosette disease of groundnut in northern Nigeria, with observations on vector, Aphis craccivora. Annals of Applied Biology 52: 125–131. DOI: https://doi.org/10.1111/j.1744....
 
11.
Brennan E.B. 2013. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids. Biological Control 65 (3): 302–311. DOI: https://doi.org/10.1016/j.bioc....
 
12.
Brennan E.B. 2016. Agronomy of strip intercropping broccoli with alyssum for biological control of aphids. Biological Control 97: 109–119. DOI: https://doi.org/10.1016/j.bioc....
 
13.
Cabral S., Soares A.O., Moura R., Garcia P. 2006. Suitability of Aphis fabae, Myzus persicae (Homoptera: Aphididae) and Aleyrodes proletella (Homoptera: Aleyrodidae) as prey for Coccinella undecimpunctata (Coleoptera: Coccinellidae). Biological Control 39 (3): 434–440. DOI: https://doi.org/10.1016/j.bioc....
 
14.
Carpino C., Ferriol Safont I., Elvira‐González L., Medina V., Rubio L., Peri E., Davino S., Galipienso Torregrosa L. 2020. RNA2‐encoded VP37 protein of Broad bean wilt virus 1 is a determinant of pathogenicity, host susceptibility, and a suppressor of post‐transcriptional gene silencing. Molecular Plant Pathology 21 (11): 1421–1435. DOI: https://doi.org/10.1111/mpp.12....
 
15.
Davidson W.M. 1922. Notes on certain species of Melanostoma (Diptera; Syrphidae). Transactions of the American Entomological Society 48 (1): 35–47.
 
16.
Gallo J. 2020. Farming: Organic Pest Management in Managing Soils and Terrestrial Systems edited by Fath BD, Jørgensen SE and Cole M. CRC Press. 415–418.
 
17.
Gontijo L.M., Beers E.H., Snyder W.E. 2013. Flowers promote aphid suppression in apple orchards. Biological Control 66 (1): 8–15. DOI: https://doi.org/10.1016/j.bioc....
 
18.
Gospodarek J. 2012. Występowanie mszycy burakowej Aphis fabae Scop. oraz jej drapieżców na bobie w warunkach zanieczyszczenia gleby metalami ciężkimi. Zeszyty Naukowe Uniwersytetu Rolniczego w Krakowie 480: 1–207.
 
19.
Hansen L.M., Lorentsen L., Boelt B. 2008. How to reduce the incidence of black bean aphids (Aphis fabae Scop.) attacking organic growing field beans (Vicia faba L.) by growing partially resistant bean varieties and by intercropping field beans with cereals. Acta Agriculturae Scandinavica, Soil & Plant Science 58 (4): 359–364. DOI: https://doi.org/10.1080/090647....
 
20.
Harris-Cypher A., Roman C., Higgins G., Scheufele S., Legrand A., Wallingford A., Sideman R.G. 2023. A field survey of syrphid species and adult densities on annual flowering plants in the Northeastern United States. Environmental Entomology 52 (2): 175–182. DOI: https://doi.org/10.1093/ee/nva....
 
21.
Hayashi M., Abe J., Owashi Y., Miura K. 2020. Estimation of movement from insectary plants to crop plants in Orius bugs (Heteroptera: Anthocoridae) by molecular gut content analysis. Applied Entomology and Zoology 55 (3): 361–365. DOI: https://doi.org/10.1007/s13355....
 
22.
Hodek J., Novak K., Skuhravy V., Holman J. 1965. The predation of Coccinella septempunctata L. on Aphis fabae Scop. on sugar beet. Acta Entomologica Bohemoslovaca 62: 241–253.
 
23.
Iperti G. 1999. Biodiversity of predaceous coccinellidae in relation to bioindication and economic importance. Agriculture, Ecosystems & Environment 74 (1–3): 323–342. DOI: https://doi.org/10.1016/S0167-....
 
24.
Jankowska B., Wojciechowicz-Żytko E. 2016. Effect of intercropping carrot (Daucus carota L.) with two aromatic plants, coriander (Coriandrum sativum L.) and summer savory (Satureja hortensis L.), on the population density of select carrot pests. Folia Horticulturae 28 (1): 13–18. DOI: https://doi.org/10.1515/fhort-....
 
25.
Jiang W., Li X., Xu X., Ma M., Leng X. 2020. The supplementation of nutrient additives in broad bean‐based diet improved the growth of “crisped” grass carp, Cenopharyngodon idellus. Journal of the World Aquaculture Society 51 (1): 299–311. DOI: https://doi.org/10.1111/jwas.1....
 
26.
Johanowicz D.L., Mitchell E.R. 2000. Effects of sweet alyssum flowers on the longevity of the parasitoid wasps Cotesia marginiventris (Hymenoptera: Braconidae) and Diadegma insulare (Hymenoptera: Ichneumonidae). Florida Entomologist 83 (1): 41–47. DOI: https://doi.org/10.2307/349622....
 
27.
Kaur S., Kaur R., Chauhan B. S. 2018. Understanding crop-weed-fertilizer-water interactions and their implications for weed management in agricultural systems. Crop Protection 103: 65–72. DOI: https://doi.org/10.1016/j.crop....
 
28.
Laurenz S., Meyhöfer R. 2016. Phenology and flower visitors of selected plant species with special respect to predators of the cabbage whitefly. IOBC-WPRS Bulletins 118: 22–29.
 
29.
Legaspi J.C., Miller N.W., Kanga L.H, Haseeb M., Zanuncio J.C. 2020. “Attract and reward” for syrphid flies using methyl salicylate and sweet alyssum in kale in north Florida. Subtropical Agriculture and Environments 71: 49–52. DOI: https://doi.org/10.1017/%20S02....
 
30.
Madeira F., Lumbierres B., Pons X. 2022. Contribution of surrounding flowering plants to reduce abundance of Aphis nerii (Hemiptera: Aphididae) on Oleanders (Nerium oleander L.). Horticulturae 8 (11): 1–14.
 
31.
Malaquias J.B., Ramalho F.S., Dias C.T.D.S., Brugger B.P., Lira A.C.S., Wilcken C.F., Pachú J.K.S., Zanuncio J.C. 2017. Multivariate approach to quantitative analysis of Aphis gossypii Glover (Hemiptera: Aphididae) and their natural enemy populations at different cotton spacings. Scientific Reports 7 (1): 41–74. DOI: https://doi.org/10.1038/srep41....
 
32.
Mayse M.A. 1978. Effects of spacing between rows on soybean arthropod populations. Journal of Applied Ecology 15: 439–450. DOI: https://doi.org/10.2307/240260....
 
33.
Nawrocka B. 2008. The influence of spinosad and azadirachtin on beneficial fauna naturally occurring on cabbage crops. Vegetable Crops Research Bulletin 69: 115. DOI: https://doi.org/10.2478/v10032....
 
34.
Neeraj V., Danish M., Doomar S., Naqvi Q.A. 1999. Studies on bean yellow mosaic virus infecting broad bean (Vicia faba L.) in Aligarh, India. Annals of Plant Protection Sciences 7: 51–54.
 
35.
Patt J.M., Hamilton G.C., Lashomb J.H. 1997. Foraging success of parasitoid wasps on flowers: interplay of insect morphology, floral architecture and searching behavior. Entomologia Experimentalis et Applicata 83 (1): 21–30. DOI: https://doi.org/10.1046/j.1570....
 
36.
Phoofolo M.W., Giles K.L., Elliott N.C. 2010. Effects of relay-intercropping sorghum with winter wheat, alfalfa, and cotton on lady beetle (Coleoptera: Coccinellidae) abundance and species composition. Environmental Entomology 39 (3): 763–774. DOI: https://doi.org/10.1603/EN0912....
 
37.
Renkema J.M., Smith D. 2020. Effects of sweet alyssum flowers and their volatile compounds on Drosophila suzukii (Matsumura) in the laboratory. Journal of Applied Entomology 144 (10): 968–971. DOI: https://doi.org/10.1111/jen.12....
 
38.
Resende A.L.S., Viana A.J.D.S., Oliveira R.J., Aguiar-Menezes E.D.L., Ribeiro R.D.L., Ricci M.D.S., Guerra J.G.M. 2010. Performance of the kale-coriander intercropping in organic cultivation and its influence on the populations of ladybeetles. Horticultura Brasileira 28: 41–46. DOI: https://doi.org/10.1590/S0102-....
 
39.
Naraghi L., Heydari A., Rezaee S., Razavi M., Jahanifar H., Khaledi E. 2010. Biological control of tomato Verticillium wilt disease by Talaromyces flavus. Journal of Plant Protection Research 50 (3): 360–365. DOI: https://doi.org/10.2478/v10045....
 
40.
Sadeghi H. 2008. Abundance of adult hoverflies (Diptera: Syrphidae) on different flowering plants. Caspian Journal of Environmental Sciences 6 (1): 47–51.
 
41.
Seidenglanz M., Huňady I., Poslušna J., Loes A.K. 2011. Influence of intercropping with spring cereals on the occurrence of pea aphids (Acyrthosiphon pisum Harris, 1776) and their natural enemies in field pea (Pisum sativum L.). Plant Protection Science 47: 25–36. DOI: https://doi.org/10.17221/40/20....
 
42.
Shannag H.K. 2007. Effect of black bean aphid, Aphis fabae, on transpiration, stomatal conductance and crude protein content of faba bean. Annals of Applied Biology 151 (2): 183–188. DOI: https://doi.org/10.1111/j.1744....
 
43.
Shannag H.K., Ababneh J.A. 2007. Influence of black bean aphid, Aphis fabae Scopoli. on growth rates of faba bean. World Journal of Agricultural Sciences 3: 344–349.
 
44.
Shrestha B., Finke D.L., Piñero J.C. 2019. The ‘botanical triad’: the presence of insectary plants enhances natural enemy abundance on trap crop plants in an organic cabbage agro-ecosystem. Insects 10 (6): 18. DOI: https://doi.org/10.3390/insect....
 
45.
Tesio F., Ferrero A. 2010. Allelopathy, a chance for sustainable weed management. International Journal of Sustainable Development 17(5): 377–389. DOI: https://doi.org/10.1080/135045....
 
46.
Undurraga N., Araya J.E., Zuazúa F., Alonso M.F. 2020. Population dynamics of Melanaphis donacis (Hemiptera: Aphididae) and its Coccinellidae and Syrphidae predators on Arundo donax L. International Journal of Agricultural and Biological Engineering 47 (2): 5. DOI: https://doi.org/10.7764/ijanr.....
 
47.
Veen M.V. 2004. Hoverflies of Northwest Europe. Identification keys to the Syrphidae. KNNV Uitgeverij, 248 pp. DOI: https://doi.org/10.1163/978900....
 
48.
Verheggen F., Capella Q., Wathelet J.P., Haubruge E. 2008. What makes Episyrphus balteatus (Diptera: Syrphidae) oviposit on aphid infested tomato plants? Commun. Journal of Agriculture and Applied Biology 73 (3): 371–381.
 
49.
Wamonje F.O., Tungadi T.D., Murphy A.M., Pate A.E., Woodcock C., Caulfield J.C., Carr J.P. 2020. Three aphid-transmitted viruses encourage vector migration from infected common bean (Phaseolus vulgaris) plants through a combination of volatile and surface cues. Frontiers in Plant Science 11: 613–772. DOI: https://doi.org/10.3389/fpls.2....
 
50.
Webster B., Bruce T., Dufour S., Birkemeyer C., Birkett M., Hardie J., Pickett J. 2008. Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae. Journal of Chemical Ecology 34 (9): 1153–1161. DOI: https://doi.org/10.1007/s10886....
 
51.
Wnuk A. 1979. Episyrphus balteatus (DeGeer 1776) (Diptera: Syrphidae) jako drapieżca mszyc (Homoptera: Aphidodea). Zeszyty Naukowe AR w Krakowie Rozprawa habilitacyjna, 72 pp.
 
52.
Wnuk A., Fuchs R. 1977. Obserwacje nad efektywnością ograniczania liczebności mszycy kapuścianej Brevicoryne brassicae (L.) przez bzygowate (Diptera, Syrphidae). Polskie Pismo Entomologiczne 47: 147–162.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top