ORIGINAL ARTICLE
 
HIGHLIGHTS
  • Most vineyards were found affected by GY in Georgia, with the prevalence of BN.
  • Georgian cultivars showed mild symptoms with no berry alterations.
  • 16SrV phytoplasmas were firstly reported in grapevine in Georgia.
  • Real-time PCR is a reliable method for detecting BN and 16SrV phytoplasmas.
KEYWORDS
TOPICS
ABSTRACT
During field surveys conducted from July to October 2018–2020 in the eastern part of Georgia (Caucasus region), 145 out of 8000 (1.8%) and 147 out of 6600 (2.2%) grapevine plants, respectively, from mother stock/collection fields and commercial vineyards, were found exhibiting typical or suspicious grapevine yellows (GY) symptoms. Most of the symptomatic grapevine plants of Georgian cultivars showed mild symptoms with no berry alterations. Leaf samples from symptomatic plants were analyzed by serological (DAS- -ELISA) and molecular (two previously published protocols of TaqMan triplex real-time PCR, here named Set I and Set II) tools for detecting GY-associated phytoplasmas. The presence of GY phytoplasmas was not detected in any examined grapevines by a serological method. GY phytoplasmas were identified in 22.41% and 6.9% symptomatic plants from mother stock and collection vineyards and in 48.3 and 19.0% symptomatic plants from commercial vineyards by Set I and Set II PCRs, respectively. As expected from previous studies reporting the wide presence of bois noir (BN) in Georgian vineyards, ‘Candidatus Phytoplasma solani’(CaPsol) was detected in most phytoplasma-infected plants (47.6%), with the highest infection rate in Chardonnay. Phytoplasmas belonging to taxonomic group 16SrV were detected in 45.6% of the phytoplasma-infected grapevines. To the best of our knowledge, this is the first report of 16SrV phytoplasmas in Georgia and in the Caucasus region. Further molecular typing of 16SrV phytoplasma strains is necessary to determine if such strains are associated with flavescence dorée (FD). The knowledge of typical GY symptoms and the utilization of accurate diagnostic tools are crucial for preventing pathogen spread and producing healthy planting material. Based on the results obtained in this study, the presence of BN and 16SrV phytoplasmas should be monitored in the next years using triplex real-time PCR.
FUNDING
The project [grant number: NFR-18-874] was funded by Shota Rustaveli National Science Foundation of Georgia (SRNSFG).
RESPONSIBLE EDITOR
Natasza Borodynko-Filas
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (37)
1.
Angelini E., Bianchi G., Filippin, L., Morassutti C., Borgo M. 2007. A new TaqMan method for theidentification of phytoplasmas associated with grapevine yellows by real-time PCR assay. Journal of Microbiology Methods 68: 613–622. DOI: 10.1016/j.mimet.2006.11.015.
 
2.
Angelini E., Constable F., Duduk B., Fiore N., Quaglino F., Bertaccini A. 2018. Grapevine phytoplasmas: Characterisation and epidemiology of phytoplasma – associated diseases. p. 123–151. In: “Phytoplasmas: Plant Pathogenic Bacteria – I:” (G. Rao, A. Bertaccini, N. Fiore, L. Liefting, eds.). Springer, Singapore, 345 pp. DOI: https://doi.org/10.1007/978-98....
 
3.
Bacilieri R., Lacombe T., Le Cunff L., Di Vecchi-Staraz M., Lacouu V., Genna B., Péros J.P., This P., Boursiquot J.M. 2013. Genetic structure in cultivated grapevines is linked to geography and human selection. BMC Plant Biology 13: 25. DOI: https://doi.org/10.1186/1471-2....
 
4.
Belli G., Bianco P.A., Conti M. 2010. Grapevine yellows: past, present and future. Journal of Plant Pathology 92: 303–326. DOI: http://dx.doi.org/10.4454/jpp.....
 
5.
Casati P., Jermini M., Quaglino F., Corbani G., Schaerer S., Passera A., Bianco P.A., Rigamonti I.E. 2017. New insights on flavescence dorée phytoplasma ecology in the vineyard agro-ecosystem in southern Switzerland. Annals of Applied Biology 171: 37–51. DOI: https://doi.org/10.1111/aab.12....
 
6.
Chkhartishvili N., Maghradze D. 2012. Viticulture and winemaking in Georgia. Vitis 51 (Special Issue): 169–176. Cooke B.M. 2006. Disease assessment and yield loss. p. 43–80. In: “The Epidemiology of Plant Diseases” (B.M. Cooke, D. Garden Jones, B. Kaye, eds.). 2nd ed., Springer, The Netherlands. DOI: https://doi.org/10.1007/1-4020....
 
7.
Constable F.E., Gibb K.S., Symons R.H., 2003. Seasonal distribution of phytoplasmas in Australian grapevines. Plant Pathology 52 (3): 267–276. DOI: 10.1046/j.1365-3059.2003.00849.x.
 
8.
Cvrković T., Jović J., Mitrović M., Krstić O., Toševski I. 2014. Experimental and molecular evidence of Reptalus panzeri as a natural vector of bois noir. Plant Pathology 63: 42–53. DOI: https://doi.org/10.1111/ppa.12....
 
9.
Elbakidze T., Gaganidze D., Kapanadze A., Aznarashvili M., Badalashvili K. 2021. Occurrence of grapevine leafrollassociated viruses in the east part of Georgian vineyards. International Journal of Agriculture Innovations and Research 9: 2319.
 
10.
Ertunc F., Orel D.C., Bayram S., Paltrinieri S., Bertaccini A., Topkaya S., Soylemezoglu G. 2015. Occurrence and identification of grapevine phytoplasmas in main viticultural regions of Turkey. Phytoparasitica 43: 303–310. DOI: 10.1007/s12600-014-0449-7.
 
11.
Eveillard S., Jollard C., Labroussaa F., Khalil D., Perrin M., Desqué D., Salar P., Razan F., Hévin C., Bordenave L., Foissac X. Malembic-Maher S. 2016. Contrasting susceptibilities to flavescence dorée in Vitis vinifera, rootstocks and wild Vitis species. Frontiers in Plant Science 7: 1762. DOI: https://doi.org/10.3389/fpls.2....
 
12.
Filippin L., Trivellone V., Galetto L., Marzachí C., Elicio V., Angelini E. 2019. Development of an anti-imp serological assay for the detection of “flavescence dorée” phytoplasmas in grapevine, insect vectors and host plants. Phytopathogenic Mollicutes 9: 75–76.
 
13.
Imazio S., Maghradze D., De Lorenzis G., Bacilieri R., Laucou V., This P., Scienza A., Failla O. 2013. From the cradle of grapevine domestication: molecular overview and description of Georgian grapevine (Vitis vinifera L.) germplasm. Tree Genetics and Genomes 9: 641–658. DOI: 10.1007/s11295-013-0597-9.
 
14.
Irimia N., Ulea E., Lipşa F. D. 2012. Detection of flavescence dorée phytoplasma in ampelographic collection at Iaşi, Romania. Indian Journal of Horticulture 69: 446–449.
 
15.
Kosovac A., Jakovljević M., Krstić O., Cvrković T., Mitrović M., Toševski I., Jović J. 2019. Role of plant-specialized Hyalesthes obsoletus associated with Convolvulus arvensis and Crepis foetida in the transmission of ‘Candidatus Phytoplasma solani’– inflicted bois noir disease of grapevine in Serbia. European Journal of Plant Pathology 153: 183–195. DOI: 10.1007/s10658-018-1553-1.
 
16.
Kosovac A., Radonjić S., Hrnčić S., Krstić O., Toševski I., Jović J. 2016. Molecular tracing of the transmission routes of bois noir in Mediterranean vineyards of Montenegro and experimental evidence for the epidemiological role of Vitex agnus-castus (Lamiaceae) and associated Hyalesthes obsoletus (Cixiidae). Plant Pathology 65: 285–298. DOI: https://doi.org/10.1111/ppa.12....
 
17.
Laimer M., Lemaire O., Herrbach E., Goldschmidt V., Minafra A., Bianco P., Wetzel T. 2009. Resistance to viruses, phytoplasmas and their vectors in the grapevine in Europe: A review. Journal of Plant Pathology 91: 7–23. DOI: 10.4454/jpp.v91i1.620.
 
18.
Langer M., Maixner M. 2004. Molecular characterisation of grapevine yellows associated phytoplasmas of the stolburgroup based on RFLP-analysis of non-ribosomal DNA. Vitis 43: 191–199. DOI: https://doi.org/10.5073/vitis.....
 
19.
Maixner M. 1994. Transmission of German grapevine yellows (Vergilbungskrankheit) by the planthopper Hyalesthes obsoletus (Auchenorrhyncha: Cixiidae). Vitis 33: 103–104. DOI: https://doi.org/10.5073/vitis.....
 
20.
Malembic-Maher S., Desqué D., Khalil D., Salar P., Bergey B., Danet J.-L., Duret S., Dubrana-Ourabah M.P., Beven L., Ember I. 2020. When a palearctic bacterium meets a nearctic insect vector: genetic and ecological insights into the emergence of the grapevine flavescence dorée epidemics in europe. PLOS Pathogens 16 (3): e1007967. DOI: https://doi.org/10.1371/journa.... ppat.1007967.
 
21.
Martini M., Murari E., Mori N., Bertaccini A. 1999. Identification and epidemic distribution of two flavescence doree-related phytoplasmas in veneto (Italy). Plant Disease 83 (10): 925–930. DOI: 10.1094/PDIS.1999.83.10.925.
 
22.
McGovern P., Jalabadze M., Batiuk S., Callahan M.P., Smith K.E., Hall G.R., Kvavadze E., Maghradze D., Rusishvili N., Bouby L., Failla O., Cola G., Mariani L., Boaretto E., Bacilieri R., This P., Wales N., Lordkipanidze D. 2017. Early Neolithic wine of Georgia in the South Caucasus. Proceeding of the National Academy of Science of the United States of America 114 (48): E10309-E10318. DOI: 10.1073/pnas.1714728114.
 
23.
Megrelishvili I., Khidesheli Z., Ujmajuridze L., Chiqovani N. 2016. The study of viral diseases in Georgian vine grafted nurseries International Journal of Development Research 6 (7): 8299–8302. DOI: https://doi.org/10.37118.
 
24.
Mori N., Quaglino F., Tessari F., Pozzebon A., Bulgari D., Casati B., Bianco P.A. 2015. Investigation on ‘bois noir’ epidemiology in north-eastern Italian vineyards through a multidisciplinary approach. Annals of Applied Biology 166 (1): 75–89. DOI: 10.1111/aab.12165.
 
25.
Moussa A., Mori N., Faccincani M., Pavan F., Bianco P.A., Quaglino F. 2019. Vitex agnus-castus cannot be used as trap plant for the vector Hyalesthes obsoletus to prevent infections by ‘Candidatus Phytoplasma solani’ in northern Italian vineyards: Experimental evidence. Annals of Applied Biology 175: 302–312. DOI: https://doi.org/10.1111/aab.12....
 
26.
Nair S., Manimekalai R. 2021. Phytoplasma diseases of plants: molecular diagnostics and way forward. World Journal of Microbiology and Biotechnology 37: 102. DOI: 10.1007/s11274-021-03061-y.
 
27.
Pelletier C., Salar P., Gillet J., Cloquwmin G., Very P., Foissac X., Malembic-Maher S. 2009. Triplex real-time PCR assay for sensitive and simultaneous detection of grapevine phytoplasmas of the 16SrV and 16SrXII-A groups with an endogenous analytical control. Vitis 48: 87–95. DOI: https://doi.org/10.5073/vitis.....
 
28.
Quaglino F., Maghradze D., Casati P., Chkhaidze N., Lobjanidze M., Ravasio A., Passera A., Venturini G., Failla O., Bianco P.A. 2016. Identification and characterization of new ‘Candidatus Phytoplasma solani’ strains associated with Bois noir disease in Vitis vinifera L. cultivars showing a range of symptoms severity in Georgia, the Caucasus Region. Plant Disease 100: 904–915. DOI: 10.1094/PDIS-09-15-0978-RE.
 
29.
Quaglino F., Maghradze D., Chkhaidze N., Failla O., Casati P., Bianco P.A. 2014. First report of ‘Candidatus Phytoplasma solani’ and ‘Candidatus Phytoplasma convolvuli’ associated with grapevine bois noir and bindweed yellows, respectively, in Georgia. Plant Disease 98: 1151. DOI: 10.1094/PDIS-01-14-0026-PDN.
 
30.
Quaglino F., Passera A., Faccincani M., Moussa A., Pozzebon A., Sanna F., Casati P., Bianco P.A., Mori N. 2021. Molecular and spatial analyses reveal new insights on bois noir epidemiology in franciacorta vineyards. Annals of Applied Biology 179: 151–168. DOI: https://doi.org/10.1111/aab.12....
 
31.
Quaglino F., Sanna F., Moussa A., Faccincani M., Passera A., Casati P., Bianco P.A., Mori N. 2019. Identification and ecology of alternative insect vectors of ‘Candidatus Phytoplasma solani’ to grapevine. Scientific Reports 9: 19522. DOI: https://doi.org/10.1038/s41598....
 
32.
Quaglino F., Zhao Y., Casati P., Bulgari D., Bianco P.A., Wei W., Davis R.E. 2013. ‘Candidatus Phytoplasma solani’, a novel taxon associated with stolbur and bois noir related diseases of plants. International Journal of Systemic and Evolutionary Microbiology 63: 2879–2894. DOI: https://doi.org/10.1099/ijs.0.....
 
33.
Quiroga N., Gamboa C., Soto D., Pino A.M., Zamorano A., Campodonico J., Fiore N. 2020. Update and new epidemiological aspects about grapevine yellows in Chile. Pathogens 9 (11): 933. DOI: 10.3390/pathogens9110933.
 
34.
Sargolzaei M., Rustioni L., Cola G., Ricciardi V., Bianco P.A., Maghradze D., Failla O., Quaglino F., Toffolatti S.L., De Lorenzis G. 2021. Georgian grapevine cultivars: ancient biodiversity for future viticulture. Frontiers in Plant Science 12: 94. DOI: https://doi.org/10.3389/fpls.2....
 
35.
Schvester D., Carle P., Moutous G. 1963. Transmission of grapevine flavescence dorée by Scaphoideus littoralis Ball. Annals Epiphytes 14: 175–198.
 
36.
Shahryari F., Allahverdipour T., Rabiei Z. 2019. Phytoplasmas associated with grapevine yellows disease in Iran: first report of a ‘Candidatus Phytoplasma trifolii’-related strain and further finding of a ‘Ca. P. solani’-related strain. New Disease Reports 40: 17–17. DOI: https://doi.org/10.5197/j.2044....
 
37.
Zambon Y., Canel A., Bertaccini A., Contaldo N. 2018. Molecular diversity of phytoplasmas associated with grapevine yellows disease in north-eastern Italy. Phytopathology 108 (2): 206–214. DOI: https://doi.org/10.1094/PHYTO-....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top