ORIGINAL ARTICLE
Sublethal effects of some synthetic and botanical insecticides on Bemisia tabaci (Hemiptera: Aleyrodidae)
 
More details
Hide details
1
Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 518 Rafsanjan, Iran
 
2
Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 14174 Tehran, Iran
 
 
Submission date: 2013-11-11
 
 
Acceptance date: 2014-05-29
 
 
Corresponding author
Saeideh Esmaeily
Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 518 Rafsanjan, Iran
 
 
Journal of Plant Protection Research 2014;54(2):171-178
 
KEYWORDS
TOPICS
ABSTRACT
In addition to direct mortality caused by insecticides, some biological traits of insects may also be affected by sublethal insecticide doses. In this study, we used the age-stage, two-sex life table method to evaluate the sublethal effects of the four synthetic insecticides: abamectin, imidacloprid, diazinon, and pymetrozin as well as the botanical insecticide taken from Calotropis procera (Asclepiadaceae) extract, on eggs of the cotton whitefly, Bemisia tabaci (Hem.: Aleyrodidae). The lowest and highest survival rates and oviposition periods were observed in whiteflies treated by diazinon and imidacloprid, respectively. We found significant differences in the net reproductive rate (R 0), the intrinsic rate of increase (r), the finite rate of increase (λ), and the gross reproductive rate (GRR) among different insecticides. Altogether, our results showed that pymetrozin and C. procera induced the most sublethal effects, thus they may be suitable candidates for use in integrated pest management programs of B. tabaci.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (48)
1.
Abbott W.S. 1925. A method of comparing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265–267.
 
2.
Agbenin O.N., Marley P.S. 2006. In vitro assay of some plant extracts against Fusarium oxysporum f. sp. lycopersici causal agent of tomato wilt. J. Plant Prot. Res. 46 (3): 215–220.
 
3.
Aghaali N., Ghadamyari M., Hosseininaveh V., Saberi Riseh N. 2013. Protease inhibitor from the crude extract of plant seeds affects the digestive proteases in Hyphantria cunea (Lep.: Arctiidae). J. Plant Prot. Res. 53 (4): 338–346.
 
4.
Azimi S., Ashouri A., Tohidfar M. 2013. Two-sex life table of cotton whitefly Bemisia tabaci on two varieties of cotton (Gossypium hirsutum). Int. J. Biosci. 3 (4): 84–89.
 
5.
Bacci L., Crespo A.L.B., Galvan T.L., Pereira E.J.G., Marcelo C., Picango G.A., Silva M.C. 2007. Toxicity of insecticides to the sweetpotato whitefly (Hemiptera: Aleyrodidae) and its natural enemies. Pest Manag. Sci. 63 (7): 699–706.
 
6.
Biondi A., Desneux N., Siscaro G., Zappala L. 2012a. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87 (7): 803–812.
 
7.
Biondi A., Mommaerts V., Smagghe G., Viñuela E., Zappalà L., Desneux N. 2012b. The non-target impact of spinosyns on beneficial arthropods. Pest Manag. Sci. 68 (12): 1523–1536.
 
8.
Biondi A., Zappalà L., Stark J.D., Desneux N. 2013. Do biopesticides affect the demographic traits of a parasitoid wasp and its biocontrol services through sublethal effects? PLoS One 8 (9): e76548.
 
9.
Brown J.K., Frohlich D.R., Rosell R.C. 1995. The sweet potato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annu. Rev. Entomol. 40: 511–534.
 
10.
Byrne F.J., Castle S., Nilima P., Tascano N. 2003. Biochemical study of resistance to imidacloprid in biotype Bemisia tabaci from Guatemala. Pest Manag. 59 (3): 347–352.
 
11.
Cameron R., Lang E.B., Annan I.B., Portillo H.E., Alvarez J.M. 2013. Use of fluorescence, a novel technique to determine reduction in Bemisia tabaci (Hemiptera: Aleyrodidae) nymph feeding when exposed to Benevia and other insecticides. J. Econ. Entomol. 106 (3): 597–603.
 
12.
Chi H. 1988. Life table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17 (1): 26–34.
 
13.
Chi H. 1990. Timing of control based on the stage structure of pest population: a simulation approach. J. Econ. Entomol. 83 (4): 1143–1150.
 
14.
Chi H. 2010. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. http://140.120.197.173/Ecology... [Accessed: October 15, 2013].
 
15.
Chi H., Liu H. 1985. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sinica 24 (2): 225–240.
 
16.
Chi H., Su H.Y. 2006. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 35 (1): 10–21.
 
17.
Chi H., Yang T.C. 2003. Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environ. Entomol. 32 (2): 327–333.
 
18.
De Barro P.J., Liu S.S., Boykin L.M., Dinsdale A.B. 2011. Bemisia tabaci: a statement of species status. Annu. Rev. Entomol. 56: 1–19.
 
19.
Desneux N., Decourtye A., Delpuech J.M. 2007. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52: 81–106.
 
20.
El-Naggar J.B., Zidan N. 2013. Field evaluation of imidacloprid and thiamethoxam against sucking insects and their side effects on soil fauna. J. Plant Prot. Res. 53 (4): 375–387.
 
21.
Esmaeily S., Samih M.A., Zarabi M., Jafarbeigi F. 2012. Comparative study of insecticides and C. procera extract on biological parameters of Bemisia tabaci (Genn.). Ann. Plant Prot. Sci. 20 (1): 14–18.
 
22.
Farhadi R., Allahyari H., Chi H. 2011. Life table and predation capacity of Hippodamia variegata (Coleoptera: Coccinellidae) feeding on Aphis fabae (Hemiptera: Aphididae). Biol. Control 59 (2): 83–89.
 
23.
Gerling D. 1990. Whiteflies: Their Bionomics, Pest Status and Management. Intercept, Andover, UK, 348 pp.
 
24.
Goodman D. 1982. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 119 (6): 803–823.
 
25.
Grafton-Cardwell E.E., Godfrey L.D., Chaney W.E., Bentley W.J. 2005. Various novel insecticides are less toxic to humans, more specific to key pests. Calif. Agric. 59 (1): 29–34.
 
26.
Haynes K.F. 1988. Sublethal effects of neurotoxic insecticides on insect behavior. Annu. Rev. Entomol. 33: 149–168.
 
27.
He Y., Zhao J., Zheng Y., Weng Q., Biondi A., Desneux N., Wu K. 2013. Assessment of potential sublethal effects of various insecticides on key biological traits of the tobacco whitefly, Bemisia tabaci. Int. J. Biol. Sci. 9 (3): 246–255.
 
28.
Heydari A., Moharrami Pour S., Pour Mirza A.A., Talebi, A.A., 2003. Effects of buprofezin, pymetrozin and fenpropathrin on reproductive parameters of Trialeurodes vaporariorum Westwood (Hom.: Aleyrodidae). Appl. Entomol. Phytopathol. 71 (2): 29–46.
 
29.
Hu L.X., Chi H., Zhang J., Zhou Q., Zhang R.J. 2010. Life table analysis of the performance of Nilaparvata lugens (Hemiptera: Delphacidae) on two wild rice species. J. Econ. Entomol. 103 (5): 1628–1635.
 
30.
Huang Y., Chi H. 2012. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 19 (2): 263–273.
 
31.
Irannejad M.K. 2010. The side-effects of several insecticides and plant extracts on green lacewing Chrysoperla carnea (Neuroptera: Chrysopidae) under laboratory conditions. M.Sc. thesis, Faculty of Agriculture, Vali-e-Asr University, Rafsanjan, Iran, 141 pp.
 
32.
Isman M.B. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 51: 45–66.
 
33.
Jafarbeigi F., Samih M.A., Zarabi M., Esmaeily S. 2012. The effect of some herbal compounds on biological parameters of Bemisia tabaci (Genn.) (Hem.: Aleyrodidae) on tomato under controlled conditions. J. Plant Prot. Res. 52 (4): 375–380.
 
34.
Jones D.R. 2003. Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 109 (3): 195–219.
 
35.
Li M., Hua J., Xub F.C., Liua S.S. 2010. Transmission of Tomato yellow leaf curl virus by two invasive biotypes and a Chinese indigenous biotype of the whitefly Bemisia tabaci. Int. J. Pest Manag. 56 (3): 275–280.
 
36.
Liang P., Tian Y.A., Biondi A., Desneux N., Gao X.W. 2012. Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. Ecotoxicology 21 (7): 889–1898.
 
37.
Liu T.X., Stansly P.A. 1995. Toxicity of biorational insecticides to Bemisia argentifolii (Homoptera: Aleyrodidae) on tomato leaves. J. Econ. Entomol. 88 (3): 564–568.
 
38.
Liu T.X., Stansly P.A. 1998. Life history of Bemisia argentifolii (Homoptera: Aleyrodidae) on Hibiscus rosasinensis (Malvaceae). Fla. Entomol. 81 (3): 437–445.
 
39.
Lu Y., Wu K., Jiang Y., Guo Y., Desneux N. 2012. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487 (7407): 362–365.
 
40.
Mahdavi-Arab N., Ebadi R., Hatami B., Talebi Jahromi K.H. 2008. Insecticidal effects of some plant extracts on Callosobruchus maculatus F. under laboratory condition and Laphigma exigua H. in greenhouse. J. Sci. Technol. Agric. Natural Resources, Water Soil Sci. 11 (42): 221–234.
 
41.
Pascual-Villalobos M.S., Robledo A. 1998. Screening for anti-insect activity in Mediterranean plants. Ind. Crop Prod. 8 (3): 183–194.
 
42.
Rahman M.A., Wilcock C.C. 1991. A taxonomic revision of Calotropis (Asclepiadaceae). Nordic J. Bot. 11 (3): 301–308.
 
43.
Ramos V.M., Banderia G.P., de Freitas C.D., Nogueira N.A., Alencar N.M., de Sousa P.A., Carvalho A.F. 2006. Latex constituents from Calotropis procera (R. Br.) display toxicity upon egg hatching and larvae of Aedes aegypti (Linn.). Mem. Inst. Oswaldo Cruz 101 (5): 503–510.
 
44.
Samih M.A., Izadi H., Mahdian K. 2006. Detection by RAPD-PCR of polymorphism in populations of Bemisia tabaci (Genn.) collected on four host plants from Iran. Commun. Agric. Appl. Biol. Sci. 71 (2): 605–611.
 
45.
Stark J.D., Banks J.E., Vargas R. 2004. How risky is risk assessment: The role that life history strategies play in susceptibility of species to stress. Proc. Natl. Acad. Sci. USA 101 (3): 732–736.
 
46.
Studebaker G.E., Kring T.J. 2001. Effects of new insecticides on insidious flower bug. p. 1143–1144. In: Proc. of the 2001 Beltwide Cotton Production Conference, National Cotton Council, Memphis TN, USA, 245 pp.
 
47.
Weisenburger D.D. 1993. Human health-effects of agrichemicals use. Hum. Pathol. 24 (6): 571–576.
 
48.
Yang T., Chi H. 2006. Life table and development of Bemisia argentifolii (Homoptera: Aleyrodidae) at different temperatures. J. Econ. Entomol. 99 (3): 691–698.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top