ORIGINAL ARTICLE
Sublethal effects of Spinosad (Tracer®) on the cotton leafworm (Lepidoptera: Noctuidae)
 
More details
Hide details
1
Department of Pesticides, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt
 
2
Department of Zoology, Faculty of Science, Menoufia University, Shebin El-Kom 32511, Egypt
 
 
Submission date: 2013-01-29
 
 
Acceptance date: 2013-07-29
 
 
Corresponding author
Gamal Elsayed Abouelghar
Department of Pesticides, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt
 
 
Journal of Plant Protection Research 2013;53(3):275-284
 
KEYWORDS
TOPICS
ABSTRACT
The effects of sublethal concentrations of spinosad (Tracer®) on development, fecundity, and food utilization, in the cotton leafworm, Spodoptera littoralis (Boisd.) were investigated. The fourth-instar larvae were fed on castor bean leaves treated with LC 25 (13.9 ppm) or LC 50 (57.8 ppm) of spinosad. Pupation and pupal weight were significantly reduced in both LC 25 and LC 50 treatments, compared with those of the controls. The fecundity rates of females in either LC 25 or LC 50 treatment were also reduced, compared with the controls. The residual activity of spinosad, applied on cotton at labeled field- and subfield-rates (200 and 70 g active substance (a.s.)/ 200 l water, respectively), was examined against the fifth-instar larvae of S. littoralis. Feeding deterrent effects were significantly demonstrated in larvae that fed on leaves collected from field plots with residual deposits of spinosad at 3 and 7 days old after application (DAA). The residual activity of spinosad on feeding and other metabolic parameters was decreased after 21 DAA indicating that the chemical started to degrade under field conditions. A histological study on midgut from larvae that previously fed on leaves treated with a concentration corresponding to the labeled-field rate of spinosad showed some alterations occurred after 48 and 96 h of treatment, compared to the normal midgut from the controls. The histological alterations included degeneration in the epithelial lining of the midgut and in the peritrophic matrix. Such histopathological effects are presumed to be responsible for the reduction in growth and food utilization caused by spinosad. It is, therefore, concluded that spinosad has sublethal effects on S. littoralis that may affect population dynamics in the field via reductions in survival and reproduction.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (46)
1.
Abbott W.S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18 (2): 265–267.
 
2.
Abdelkefi-Mesrati L., Boukedi H., Dammak-Karray M., Sellami-Boudawara T., Jaoua S., Tounsi S. 2011. Study of the Bacillus thuringiensis Vip3Aa16 histopathological effects and determination of its putative binding proteins in the midgut of Spodoptera littoralis. J. Invertebr. Pathol. 106 (2): 250–254.
 
3.
Aydin M.H., Gurkan M.O. 2006. The efficacy of spinosad on different strains of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). Turk. J. Biol. 30 (1): 5–9.
 
4.
Azab S.G., Sadek M.M., Crailsheim K. 2001. Protein metabolism in larvae of the cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae) and its response to three mycotoxins. J. Econ. Entomol. 30 (5): 817–823.
 
5.
Barreto C.F., Cavasin G.M., Silva H.H.G., Silva I.G. 2006. Study of the morphohistological modifications in larvae of Aedes aegypti (Diptera, Culicidae) submitted to the pure ethanolic extract of Sapindus saponaria Lin. (Sapindaceae). Rev. Patol. Trop. 35 (1): 37–57.
 
6.
Bret B.L., Larson L.L., Schoonover J.R. 1997. Biological proporeties of spinosad. Down to Earth 52: 6–13.
 
7.
Brickle D.S., Turnipseed S.G., Sullivan M.J. 2001. Efficacy of insecticides of different chemistries against Helicoverpa zea (Lepidoptera: Noctuidae) in transgenic Bacillus thuringiensis and conventional cotton. J. Econ. Entomol. 94 (1): 86–92.
 
8.
Brown E.S., Dewhurst C.F. 1975. The genus Spodoptera (Lepidoptera: Noctuidae) in Africa and the near East. Bull. Entomol. Res. 65 (2): 221–261.
 
9.
Dequech S.T., Fiuza L.M., Silva R.F., Zumba R.C. 2007. Histopathology of larvae of Spodoptera frugiperda (Lep., Noctuidae) infected by Bacillus thuringiensis aizawai and with eggs of Campoletis flavicincta (Hym., Ichneumonidae). Ciência Rural 37 (1): 273–276.
 
10.
Dhadialla S., Carlson R., Le P. 1998. New insecticides with ecdysteroidal and juvenile hormone activity. Annu. Rev. Entomol. 43: 545–569.
 
11.
Dougherty E.M., Narang N., Loeb M., Lynn D.E., Shapiro M. 2006. Fluorescent brightener inhibits apoptosis in baculovirus-infected gypsy moth larval midgut cells. Biocontrol Sci. Technol. 16 (1/2): 157–168.
 
12.
Eger J.R.J.E., Lindenberg L.B. 1998. Utility of spinosad for insect control in Florida vegetables. Proc. Florida State Horticulture, 111: 55–57.
 
13.
EL-Defrawi M., Toppozada A., Mansour N., Zeid M. 1964. Toxicological studies on the Egyptian cotton leaf worm, Prodenia litura. 1-Suceptibility of different larval instars to insecticides. J. Econ. Entomol. 57 (4): 591–593.
 
14.
Fujiwara Y.T., Takahashi T., Yoshioka T., Nakasuji F. 2002. Changes in egg size of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae) treated with fenvalerate at sublethal doses and viability of the eggs. Appl. Entomol. Zool. 37 (1): 103–109.
 
15.
Galvan T.L., Koch R.I., Hutchison W.D. 2005. Effects of spinosad and indoxacarb on survival, development, and reproduction of the multicolored Asian lady beetle (Coleoptera: Coccinellidae). Biol. Control 34 (1): 108–114.
 
16.
Haynes K.F. 1988. Sublethal effects of neurotoxic insecticides on insect behavior. Annu. Rev. Entomol. 33: 149–168.
 
17.
Knight L. 2000. Tebufenozide targeted against codling moth (Lepidoptera: Tortricidae) adults eggs and larvae. J. Econ. Entomol. 93 (6): 1760–1767.
 
18.
LeOra Software. 1987. POLO-PC: a User’s Guide to Probit or Logit Analysis. LeOra Software Berkeley, CA.
 
19.
Lo ́pez D. Jr., Latheef A. 1999. Mortality and reproductive effects of ingested Tracer® on adult bollworm. p. 1091–1092. In: Proc. Beltwide Cotton Conference, 3−7 January 1999, Orlando, FL. National Cotton Council, Memphis, TN.
 
20.
Martinez, S.S., Van Emden H.F. 1999. Sublethal concentrations of azadirachtin affect food intake, conversion efficiency and feeding behaviour of Spodoptera littoralis (Lepidoptera: Noctuidae). Bull. Entomol. Res. 89 (1): 65−71.
 
21.
Michaud J.P., Grant A.K. 2003. IPM-compatibility of foliar insecticides for citrus: indices derived from toxicity to beneficial insects from four orders. J. Insect Sci. 3, p. 18.
 
22.
Mordue (Lutz) A.J., Nisbet A. 2000. Azadirachtin from the neem tree Azadirachta indica: its action against insects. An. Soc. Entomol. Brasil 29 (3): 615−632.
 
23.
Nasiruddin M., Mordue A.J. (Luntz). 1993. The effect of azadirachtin on the midgut histology of the locusts, Schistocerca gregaria and eutta migratoria. Tissue Cell 25 (6): 875−884.
 
24.
Nathan S.S., Kalaivani K., Murugan K., Chung P.G. 2005. Efficacy of neem limonoids on Cnaphalocrocis medinalis Guenee (Lepidoptera: Pyralidae) the rice leaffolder. Crop Prot. 24: 760–763.
 
25.
Pineda S., Budia F., Schneider M.I., Gobbi A., Vin ̃ uela E., Valle J., Del Estal P. 2004. Effect of two biorational insecticides, spinosad and methoxyfenozide, on Spodoptera littoralis (Lepidoptera: Noctuidae) under laboratory conditions. J. Econ. Entomol. 97 (6): 1906–1911.
 
26.
Pineda S., Schneider M., Smagghe G., Martinez A., Estal P. D., Uela E., Valle J., Budia F. 2007. Lethal and sublethal effects of methoxyfenozide and spinosad on Spodoptera littoralis (Lepidoptera: Noctuidae). J. Econ. Entomol. 100 (3): 773–780.
 
27.
Pineda S., Smagghe G., Schneider M. I., Del Estal P., Vin ̃ uela E., Martı ́nez A. M., Budia F. 2006. Toxicity and pharmacokinetics of spinosad and methoxyfenozide to Spodoptera lit toralis (Lepidoptera: Noctuidae). Environ. Entomol. 35 (4): 856–864.
 
28.
Quesada-Moraga E., Santiago-Alvarez C. 2001. Rearing and breeding of the Moroccan locust Dociostaurus maroccanus (Thunberg) (Orthop., Acrididae) under laboratory conditions. J. Appl. Entomol. 125 (3): 121–124.
 
29.
Quesada-Morga E., Carrasco-Diaz A., Santiago-Alvarez C. 2006. Insecticidal and antifeedant activities of protein secreted by entomopathogenic fungi against Spodoptera littoralis (Lep., Noctuidae). J. Appl. Entomol. 130 (8): 452–442.
 
30.
Roel A.R., Dourado D.M., Matias R., Porto K.R.A., Bednaski A.V., da Costa R.B. 2010. The effect of sub-lethal doses of Azadirachta indica (Meliaceae) oil on the midgut of Spodoptera frugiperda (Lepidoptera, Noctuidae). Rev. Bras. Entomol. 54 (3): 505–510.
 
31.
Sakr H.H. 2007. Toxicity of Streptomyces lavendulae (Streptomycetaceae) crude filtrate on Spodoptera littoralis (Boisd.) larvae (Lepidoptera: Noctuidae). Egypt. J. Exp. Biol. (Zool.) 3: 197–202.
 
32.
Salgado L. 1997. The modes of action of spinosad and other insect control products. Down to Earth 52: 35–43.
 
33.
Schneider M.I., Smagghe G., Pineda S., Vinuela E. 2004. Action of insect growth regulator insecticides and spinosad on life history parameters and absorption in third-instar larvae of the endoparasitoid Hyposoter didymator. Biol. Control 31 (2): 189–198.
 
34.
Smagghe G., Pineda S., Carton B., Del Estal P., Budia F., Vinuela E. 2003. Toxicity and kinetics of methoxyfenozide in greenhouse-selected Spodoptera exigua (Lepidoptera: Noctuidae). Pest Manage. Sci. 59 (11): 1203–1209.
 
35.
Sparks T.C., Thompson D., Kirst A., Hertlein B., Larson L.L., Worden T.V., Thibault S. 1998. Biological activity of spinosyns, new fermentation derived insect control agents, on tobacco budworm (Lepidoptera: Noctuidae) larvae. J. Econ. Entomol. 91 (6): 1277–1283.
 
36.
Stark J.D., Banks J.E. 2003. Population-level effects of pesticides and other toxicants on arthropods. Annu. Rev. Entomol. 48: 505–551.
 
37.
Terra W.R., Ferreira C. 1994. Insect digestive enzymes: properties, compartmentalization and function. Com. Biochem. Physiol. 109B: 1– 62.
 
38.
Thompson G.D., Busacca J.D., Jants O.K., Krist H.A., Larson L, Sparks T.C. 1995. Spinosyns: an overview of new natural insect management systems. p. 1039–1043. In: Proc. Beltwide Cotton Conf., National Cotton Council, San Antonio, TX.
 
39.
Thompson G.D., Dutton R., Sparks T.C. 2000. Spinosad – a case study: an example from a natural products discovery programme. Pest Manage. Sci. 56 (8): 696–702.
 
40.
Thompson G.D., Michel K.H., Yao R.C., Mynderse J.S., Mosburg C.T., Worden T.V., Chio E.H., Sparks T.C., Hutchins S.H. 1997. The discovery of Saccharopolyspora spinosa and a new class of insect control products. Down to Earth 52: 1–5.
 
41.
Timmins W.A., Reynolds S.E. 1992. Azadirachtin inhibits secretion of trypsin in midgut of Manduca sexta caterpillars: reduced growth due to impaired protein digestion. Entomol. Exp. Appl. 63 (1): 47–54.
 
42.
Waldbauer GP. 1968. The consumption and utilization of food by insects. Adv. Insect Physiol. 5: 229–288.
 
43.
Wanner K.W., Helson B.V., Harris B.J. 2000. Laboratory and field evaluation of spinosad against the gypsy moth, Lymantria dispar. Pest Manage. Sci. 56: 855–860.
 
44.
Williams T., Cisneros J., Penagos D.I., Valle J., Tamez-Guerra P. 2004. Ultralow rates of spinosad in phagostimulant granules provide control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. J. Econ. Entomol. 97 (2): 422–428.
 
45.
Yee W.L., Toscano N.C. 1998. Laboratory evaluations of synthetic and natural insecticides on beet armyworm (Lepidoptera: Noctuidae) damage and survival on lettuce. J. Econ. Entomol. 91 (1): 56–63.
 
46.
Yin X.H., Wu Q.J., Li X.F., Zhang Y.J., Xu B.Y. 2008. Sublethal effects of spinosad on Plutella xylostella (Lepidoptera: Yponomeutidae). Crop Prot. 27 (10): 1385–1391.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top