ORIGINAL ARTICLE
Stress-tolerant antagonistic plant growth-promoting rhizobacteria from Zea mays
More details
Hide details
1
Microbiology Department, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, India
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2017-11-11
Acceptance date: 2018-01-02
Corresponding author
Pratibha Vyas
Microbiology Department, School of Bioengineering and Biosciences, Lovely Professional University, 144411 Jalandhar, India
Journal of Plant Protection Research 2018;58(2):115-123
KEYWORDS
TOPICS
ABSTRACT
Biological control of plant diseases is strongly emerging as an effective alternative to the use of chemical pesticides and fungicides. In addition, stress tolerance is also an important attribute in the selection of bacteria for the development of microbial inoculants. Fourteen salt-tolerant bacteria showing different morphological features isolated from the rhizosphere of maize were evaluated for different plant growth-promoting activities. All isolates showed auxin production ranging from 5 to 24 µg/ml after 48 h incubation in tryptophan supplemented media. Phosphate solubilization ranged from 15 to 419 µg/ml. 1-aminocycloproprane-1-carboxylate (ACC)-deaminase activity was shown by 6 isolates, ammonia production by 9 isolates, siderophore production by 8 isolates while HCN production by 4 isolates. Four bacterial isolates showing all plant growth-promoting activities also showed strong antagonistic against Fusarium oxysporum, Fusarium verticillioides, Curvularia lunata and Alternaria alternata and abiotic stress tolerance against salinity, temperature, pH and calcium salts. Two select bacterial isolates significantly enhanced the growth of test plants pea and maize under greenhouse conditions. The bacterial isolate M1B2 showing highest growth promotion of test plants was identified as Bacillus sp. based on phenotypoic and 16S rRNA gene sequencing. The results indicated that the Bacillus sp. M1B2 is a potential candidate for the development of microbial inoculants for stressed environments.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (49)
1.
Ahmad F., Ahmad I., Khan M.S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growthpromoting activities. Microbiological Research 163 (2): 173–181. DOI:
https://doi.org/10.1016/j.micr....
2.
Arzanlou M., Mousavi S., Bakhshi M., Khakvar R., Bandehagh A. 2016. Inhibitory effects of antagonistic bacteria inhabiting the rhizosphere of the sugarbeet plants, on Cercospora beticola Sacc., the causal agent of Cercospora leaf spot disease on sugarbeet. Journal of Plant Protection Research 56 (1): 6–14. DOI:
https://doi.org/10.1515/jppr-2....
3.
Araujo F.F. 2008. Seed inoculation with Bacillus subtilis, formulated with oyster meal and growth of corn, soybean and cotton. Ciência e Agrotecnologia 32 (2): 456–462. DOI:
http://dx.doi.org/10.1590/S141....
4.
Błaszczyk L., Siwulski M., Sobieralski K., Lisiecka J., Jędryczka M. 2014. Trichoderma spp. – application and prospects for use in organic farming and industry. Journal of Plant Protection Research 54 (4): 309–317. DOI:
https://doi.org/10.2478/jppr-2....
5.
Castric P.A. 1975 Hydrogen cyanide a secondary metabolite of Pseudomonas aeruginosa. Canadian Journal of Microbiology 21: 613–618. DOI:
https://doi.org/10.1139/m75-08....
6.
Cappuccino J.C., Sherman N. 1992. Microbiology: a Laboratory Manual. Benjamin/Cummings Publishing Co., New York, 179 pp.
7.
Compant S., Climent C., Sessitsch A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry 42 (5): 669–678. DOI:
https://doi.org/10.1016/j.soil....
8.
Dalal J., Kulakarni N. 2013. Antagonistic and growth promoting potentials of indigenous endophytic bacteria of soybean (Glycine max (L.) Merril). Current Research in Microbiology and Biotechnology 1: 62–69.
9.
Das P., Behera B.K., Meena D.K., Azmi S.A., Chatterjee S., Meena M., Sharma A.P. 2015. Salt stress tolerant genes in halophilic and halotolerant bacteria: Paradigm for salt stress adaptation and osmoprotection. International Journal of Current Microbiology and Applied Sciences 4: 642–658. DOI:
https://doi.org/10.1128/genome....
10.
Dey R., Pal K.K., Bhatt D.M., Chauhan S.M. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiological Research 159: 371–394. DOI:
https://doi.org/10.1016/j.micr....
11.
Figueroa-López A.M., Cordero-Ramírez J.D., Martínez-Álvarez J.C., López-Meyer M., Lizárraga-Sánchez G.J., Félix-Gastélum R., Castro-Martínez C., Maldonado-Mendoza I.E. 2016. Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. Springer Plus 5 (1): 330. DOI:
https://doi.org/10.1186/s40064....
12.
Glick B.R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research 169: 30–39. DOI:
https://doi.org/10.1016/j.micr....
13.
Ghosh R., Barman S., Khatun J., Mandal N.C. 2016. Biological control of Alternaria alternata causing leaf spot disease of Aloe vera using two strains of rhizobacteria. Biological Control 97: 102–108. DOI:
https://doi.org/10.1016/j.bioc....
14.
Gulati A., Rahi P., Vyas P. 2008. Characterization of phosphate solubilizing fluorescent pseudomonads from rhizosphere of seabuckthorn growing in cold deserts of Himalayas. Current Microbiology 56: 73–79. DOI:
https://doi.org/10.1007/s00284....
15.
Gulati A., Vyas P., Rahi P., Kasana R.C. 2009. Plant growth promoting and rhizosphere competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of Himalayas. Current Microbiology 58: 371–377. DOI:
https://doi.org/10.1007/s00284....
16.
Gupta R., Singal R., Shanker A., Kuhad R.C., Saxena R.K. 1994. A modified plate assay for screening phosphate-solubilizing microorganisms. Journal of General and Applied Microbiology 40 (3): 255–260. DOI:
https://doi.org/10.2323/jgam.4....
17.
Jacobson B.C., Pasternak J.J., Glick B.R. 1994. Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR 12–2. Canadian Journal of Microbiology 40 (12): 1019–1025. DOI:
https://doi.org/10.1139/m94-16....
18.
Karnwal A. 2017. Isolation and identification of plant growth promoting rhizobacteria from maize (Zea mays L.) rhizosphere and their plant growth promoting effect on rice (Oryza sativa L.). Journal of Plant Protection Research 57: 144–151. DOI:
https://doi.org/10.1515/jppr-2....
19.
Kaur R., Devi M.A., Vyas P. 2017. Endophytic Pseudomonas sp. TCA1 from Tinosporacordifolia stem with antagonistic and plant growth-promoting potential. Research Journal of Pharmacy and Technology 10 (2): 456–460. DOI:
https://doi.org/10.5958/0974-3....
20.
Krauss U., Hidalgo E., Bateman R., Adonijah V., Arroyo C., Garcia J., Crozier J., Brown N. A., Hoopen G.M., Holmes K.A. 2010. Improving the formulation and timing of application of endophytic biocontrol and chemical agents against frosty pod rot (Moniliophthora roreri) in cocoa (Theobroma cacao). Biological Control 54: 230–240. DOI:
https://doi.org/10.1016/j.bioc....
22.
Kuan K.B., Othman R., Rahim K.A., Shamsuddin Z.H. 2016. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLOS One 11 (3): e0152478. DOI:
https://doi.org/10.1371/journa....
23.
Lal M., Kumar S., Ali M., Khan A., Singh V., Murti S. 2013. Host range, susceptibility period of Curvularia lunata causing leaf spot of black gram and germplasm screening. Agriways 1: 142–146.
24.
Lawongsa P., Boonkerd N., Wongkaew N., O’Gara F., Teaumroong N. 2008. Molecular and phenotypic characterization of potential plant growth-promoting Pseudomonas from rice and maize rhizospheres. World Journal of Microbiology and Biotechnology 24: 1877–1884. DOI:
https://doi.org/10.1007/s11274....
25.
Li H.Q., Jiang X.W. 2017. Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russian Journal of Plant Physiology 64 (2): 235–241.
26.
Loper J.E., Schroth M.N. 1986. Influence of bacterial sources of indole-3-acetic acid on root elongation of sugarbeet. Phytopathology 76: 386–389. DOI:
https://doi.org/10.1094/Phyto-....
27.
Molina-Romero D., Baez A., Quintero-Hernández V., Castañeda-Lucio M., Fuentes-Ramírez L.E., del RocíoBustillos-Cristales M., Rodríguez-Andrade O., Morales-García Y.E., Munive A., Muñoz-Rojas J. 2017. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLOS One 12 (11): e0187913. DOI:
https://doi.org/10.1371/journa....
28.
Murillo-Williams A., Munkvold G.P. 2008. Systemic infection by Fusarium verticillioides in maize plants grown under three temperature regimes. Plant Diseases 92 (12): 1695–1700. DOI:
https://doi.org/10.1094/pdis-9....
29.
Nadeem S.M., Zahir Z.A., Naveed M., Arshad M. 2007. Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Canadian Journal of Microbiology 53 (10): 1141–1149. DOI:
https://doi.org/10.1139/w07-08....
30.
Nautiyal C.S. 1999. An efficient microbiological growth medium for screening phosphate-solubilizing microorganisms. FEMS Microbiology Letters 170 (1): 265–270. DOI:
https://doi.org/10.1016/s0378-....
31.
Orhan F. 2016. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Brazilian Journal of Microbiology 47 (3): 621–627. DOI:
https://doi.org/10.1016/j.bjm.....
32.
Oteino N., Lally R.D., Kiwanuka S., Lloyd A., Ryan D., Germaine K.J., Dowlin D.N. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology 6: 745. DOI:
https://doi.org/10.3389/fmicb.....
33.
Panwar M., Tewari R., Gulati A., Nayyar H. 2016. Indigenous salt-tolerant rhizobacterium Pantoea dispersa (PSB3) reduces sodium uptake and mitigates the effects of salt stress on growth and yield of chickpea. Acta Physiologiae Plantarum 38 (12): 278. DOI:
https://doi.org/10.1007/s11738....
34.
Praveen Kumar G., Mir Hassan Ahmed S.K., Desai S., Leo Daniel Amalraj E., Rasul A. 2014. In vitro screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp. International Journal of Bacteriology 6: 2014. DOI:
https://doi.org/10.1155/2014/1....
35.
Rajendran L., Karthikeyan G., Raguchander T., Samiyappan R. 2007. In vitro evaluation of bacterial endophytes influence on Ganoderma lucidum (Leys) Karst. mycelial growth. Journal of Plant Protection Research 47 (4): 425–436.
36.
Rangarajan S., Saleen L.M., Nair S. 2002. Diversity of Pseudomonas spp. isolated from rice rhizosphere populations grown along a salinity gradient. Microbial Ecology 43: 280–289. DOI:
https://doi.org/10.1007/s00248....
37.
Reetha A.K., Pavani S.L., Mohan S. 2014. Hydrogen cyanide production ability by bacterial antagonist and their antibiotics inhibition potential on Macrophomina phaseolina (Tassi.) Goid. International Journal of Current Microbiology and Applied Sciences 3 (5): 172–178.
38.
Schwyn B., Neilands J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry 160: 45–56. DOI:
https://doi.org/10.1016/0003-2....
39.
Sharan A., Shikha D.N.S., Gaur R. 2008. Xanthomonas campestris, a novel stress tolerant, phosphate-solubilizing bacterial strain from saline-alkali soils. World Journal of Microbiology and Biotechnology 24: 753–759. DOI:
https://doi.org/10.1007/s11274....
40.
Stachecki S., Praczyk T., Adamczewski K. 2004. Adjuvant effects on plant growth regulators in winter wheat. Journal of Plant Protection Research 44 (4): 365–371.
41.
Tahir H.A., Gu Q., Wu H., Raza W., Hanif A., Wu L., Colman M.V., Gao X. 2017. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Frontiers in Microbiology 8: 171. DOI:
https://doi.org/10.3389/fmicb.....
42.
Tsavkelova E.A., Cherdyntseva T.A., Botina S.G., Netrusov A.I. 2007. Bacteria associated with orchid roots and microbial production of auxin. Microbiological Research 162: 69–76. DOI:
https://doi.org/10.1016/j.micr....
43.
Vurukonda S.S.K.P., Vardharajula S., Shrivastava M., SkZ A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research 184: 13–24. DOI:
https://doi.org/10.1016/j.micr....
44.
Vyas P., Gulati A. 2009. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology 9: 174. DOI:
https://doi.org/10.1186/1471-2....
45.
Vyas P., Rahi P., Gulati A. 2009. Stress tolerance and genetic variability of phosphate-solubilizing fluorescent Pseudomonas from the cold desert of the trans-Himalayas. Microbial Ecology 58: 425–434. DOI:
https://doi.org/10.1007/s00248....
46.
Vyas P., Joshi R., Sharma K.C., Rahi P., Gulati A., Gulati Arvind. 2010. Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential. Journal of Microbiology and Biotechnology 20: 1724–1734. DOI:
https://doi.org/10.4014/jmb.10....
47.
Vyas P., Kaur R. 2017. Plant growth promoting and antagonistic endophytic bacteria from the medicinal plant Tinospora cordifolia stem. International Journal of Research in Pharmaceutical Science 8: 189–193.
48.
Wang L.T., Lee F.L., Tai C.J., Kasai H. 2007. Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA–DNA hybridization in the Bacillus subtilis group. International Journal of Systematic and Evolutionary Microbiology 57: 1846–1850. DOI:
https://doi.org/10.1099/ijs.0.....
49.
Zalila-Kolsi I., Mahmoud A.B., Ali H., Sellami S., Nasfi Z., Tounsi S., Jamoussi K. 2016. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum). Microbiological Research 192: 148–158. DOI:
https://doi.org/10.1016/j.micr....