REVIEW
Smart farming approach using nanotechnology: an inevitable role in the application of pesticides
More details
Hide details
1
Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603 103, India
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2022-11-19
Acceptance date: 2023-02-15
Online publication date: 2023-06-14
Corresponding author
Agnishwar Girigoswami
Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI),
Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai-603 103, India
Journal of Plant Protection Research 2023;63(2):137-158
HIGHLIGHTS
- Quantification of harmful pollutants in the environment is essential
- Nanobased pesticidal applications can enrich the properties and reduce the adverse effects
- The use of nanosensors in the field provides rapid and accurate quantification.
- Besides pesticidal applications, nanotechnology is useful in crop production, storage of crops, food packaging, etc.
KEYWORDS
TOPICS
ABSTRACT
Food and crops are sourced primarily from agriculture, and due to the enormous growth in
population, agricultural goods are in great demand, while farmland is being developed for
residences. Therefore, certain chemicals, like pesticides, are being overused and have become
unavoidable to increase crop productivity and storage. Excessive release of pesticides
into the environment and food chain may pose a health risk. Food and agricultural products
need routine analyses to monitor the level of pesticide residuals. As pesticide detection
techniques are labor-intensive and require highly qualified professionals, an alternative
technique must be developed, such as analytical nanotechnology. The most commonly
used nanomaterials for pesticide delivery, enrichment, degradation, detection, and removal
are metals, clays, polymers, and lipids. In colorimetric analysis of pesticides, metal nanoparticles
are widely used which are quick, easy, and do not require any sample preparation.
This manuscript compiles the latest research on nanotechnology in pesticide formulation
and detection for smart farming.
ACKNOWLEDGEMENTS
The authors wish to acknowledge CARE for financial
and infrastructural support. Harini, Pragya, Gowtham,
and Thirumalai also kindly acknowledge CARE for fellowships.
RESPONSIBLE EDITOR
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (124)
1.
Agraharam G., Saravanan N., Girigoswami A., Girigoswami K. 2022. Future of Alzheimer’s Disease: Nanotechnology-Based diagnostics and Therapeutic Approach. BioNanoScience 12: 1002–1017. DOI:
https://doi.org/10.1007/s12668....
2.
Akiyama Y. 2004. Development of sensitive analysis for multiple pesticide residues and monitoring data in foods. Journal of the Food Hygienic Society of Japan 45 (4): J222–J224.
3.
Al-saleh I.A. 1994. Pesticides: a review article. Journal of environmental pathology, toxicology and oncology: official organ of the International Society for Environmental Toxicology and Cancer 13 (3): 151–161.
4.
Anand M., Sathyapriya P., Maruthupandy M., Beevi A.H. 2018. Synthesis of chitosan nanoparticles by TPP and their potential mosquito larvicidal application. Frontiers in Laboratory Medicine 2 (2): 72–78. DOI:
https://doi.org/10.1016/j.flm.....
5.
Anh N.T., Dinh N.X., Van Tuan H., Thuan T.H., Tung L.M., Le V.P., Tri D.Q., Le A.T. 2021. Cost-effective Tween 80-Capped copper nanoparticles for ultrasensitive colorimetric detection of thiram pesticide in environmental water samples. Journal of Nanomaterials 2021. DOI:
https://doi.org/10.1155/2021/5....
6.
Barthelmebs L., Hayat A., Limiadi A.W., Marty J.L., Noguer T. 2011. Electrochemical DNA aptamer-based biosensor for OTA detection, using superparamagnetic nanoparticles. Sensors and Actuators B: Chemical 156 (2): 932–937. DOI:
https://doi.org/10.1016/j.snb.....
7.
Bayda S., Adeel M., Tuccinardi T., Cordani M., Rizzolio F. 2019. The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules 25 (1): 112. DOI:
https://doi.org/10.3390/molecu....
8.
Bharti V., Ibrahim S. 2020. Biopesticides: production, formulation and application systems. International Journal of Current Microbiology and Applied Science 9 (10): 3931–3946. DOI:
https://doi.org/10.20546/ijcma....
9.
Casida J.E. 2012. The greening of pesticide-environment interactions: some personal observations. Environmental Health Perspectives 120 (4): 487–493. DOI:
https://doi.org/10.1289/ehp.11....
10.
Casida J.E., Durkin K.A. 2017. Pesticide chemical research in toxicology: lessons from nature. Chemical Research in Toxicology 30 (1): 94–104. DOI:
https://doi.org/10.1021/acs.ch....
11.
Chen H., Zhi H., Feng B., Cui B., Zhao X., Sun C., Wang Y., Cui H., Zhang B., Zeng Z. 2022. Thermo-responsive quaternary ammonium chitosan nanocapsules with on-demand controlled pesticide release and maximally synergistic biological activity. Journal of Agricultural and Food Chemistry 70 (25): 7653–7661. DOI:
https://doi.org/10.1021/acs.ja....
12.
Chen Z., Wang Y., Mo Y., Long X., Zhao H., Su L., Duan Z., Xiong Y. 2020. ZIF-8 directed templating synthesis of CeO2 nanoparticles and its oxidase-like activity for colorimetric detection. Sensors and Actuators B: Chemical 323: 128625. DOI:
https://doi.org/10.1016/j.snb.....
13.
Costa L.G., Giordano G., Guizzetti M., Vitalone A. 2008. Neurotoxicity of pesticides: a brief review. Frontiers in Bioscience-Landmark 13 (4): 1240–1249. DOI:
https://doi.org/10.2741/2758.
14.
Damalas C.A., Eleftherohorinos I.G. 2011. Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health 8 (5): 1402–1419. DOI:
https://doi.org/10.3390/ijerph....
15.
Das A., Singh J., Yogalakshmi K. 2017. Laccase immobilized magnetic iron nanoparticles: fabrication and its performance evaluation in chlorpyrifos degradation. International Biodeterioration & Biodegradation 117: 183–189. DOI:
https://doi.org/10.1016/j.ibio....
16.
Devi R.K., Ganesan M., Chen T.W., Chen S.M., Lin K.Y., Akilarasan M., Al-Onazi W.A., Rasheed R.A., Elshikh M.S. 2022. Tailored architecture of molybdenum carbide/iron oxide micro flowers with graphitic carbon nitride: An electrochemical platform for nano-level detection of organophosphate pesticide in food samples. Food Chemistry 397: 133791. DOI:
https://doi.org/10.1016/j.food....
17.
Do Carmo S.N., Mendes L.D., Corazza G., Comelli H., Merib J., Carasek E. 2020. Determination of pesticides of different chemical classes in drinking water of the state of Santa Catarina (Brazil) using solid-phase microextraction coupled to chromatographic determinations. Environmental Science and Pollution Research 27: 43870–43883. DOI:
https://doi.org/10.1007/s11356....
18.
Gabaldón J.A., Maquieira A., Puchades R. 1999. Current trends in immunoassay-based kits for pesticide analysis. Critical Reviews in Food Science and Nutrition 39: 519–538. DOI:
https://doi.org/10.1080/104086....
19.
Ghoto S.A., Khuhawar M.Y., Jahangir T.M. 2019. Applications of copper nanoparticles for colorimetric detection of dithiocarbamate pesticides. Journal of Nanostructure in Chemistry 9: 77–93. DOI:
https://doi.org/10.1007/s40097....
20.
Ghoto S.A., Khuhawar M.Y., Jahangir T.M. 2019. Silver nanoparticles with sodium dodecyl sulfate as colorimetric probe for detection of dithiocarbamate pesticides in environmental samples. Analytical Sciences 35: 631–637. DOI:
https://doi.org/10.2116/analsc....
21.
Girigoswami A., Girigoswami K. 2022. Versatile applications of nanosponges in biomedical field: a glimpse on SARS-CoV-2 anagement. BioNanoScience 12: 1018–1031. DOI:
https://doi.org/10.1007/s12668....
22.
Girigoswami A., Yassine W., Sharmiladevi P., Haribabu V., Girigoswami K. 2018. Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Scientific Reports 8: 16459. DOI:
https://doi.org/10.1038/s41598....
23.
Haggblade S., Diarra A., Traoré A. 2022. Regulating agricultural intensification: lessons from West Africa’s rapidly growing pesticide markets. Development Policy Review 40 (1): e12545. DOI:
https://doi.org/10.1111/dpr.12....
24.
Handford C.E., Elliott C.T., Campbell K. 2015. A review of the global pesticide legislation and the scale of challenge in reaching the global harmonization of food safety standards. Integrated Environmental Assessment and Management 11 (4): 525–536. DOI:
https://doi.org/10.1002/ieam.1....
25.
Haribabu V., Girigoswami K., Sharmiladevi P., Girigoswami A. 2020. Water–nanomaterial interaction to escalate twinmode magnetic resonance imaging. ACS Biomaterials Science & Engineering 6 (8): 4377–4389. DOI:
https://doi.org/10.1021/acsbio....
26.
Haribabu V., Sharmiladevi P., Akhtar N., Farook A. S., Girigoswami K., Girigoswami A. 2019. Label free ultrasmall fluoromagnetic ferrite-clusters for targeted cancer imaging and drug delivery. Current Drug Delivery 16 (3): 233–241. DOI:
https://doi.org/10.2174/156720....
27.
Harini K., Girigoswami K., Ghosh D., Pallavi P., Gowtham P., Girigoswami A. 2022. Architectural fabrication of multifunctional janus nanostructures for biomedical applications. Nanomedicine Journal 9 (3): 180–191. DOI:
https://doi.org/10.22038/NMJ.2....
28.
Harini K., Pallavi P., Gowtham P., Girigoswami K., Girigoswami A. 2022. Smart polymer-based reduction responsive therapeutic delivery to cancer cells. Current Pharmacology Reports 8: 205–211. DOI:
https://doi.org/10.1007/s40495....
29.
Hassani S., Akmal M. R., Salek-Maghsoudi A., Rahmani S., Ganjali M. R., Norouzi P., Abdollahi M. 2018. Novel labelfree electrochemical aptasensor for determination of Diazinon using gold nanoparticles-modified screen-printed gold electrode. Biosensors and Bioelectronics 120: 122–128. DOI:
https://doi.org/10.1016/j.bios....
30.
Hatakeyama E., Kajita H., Sugawara T., Sasaki A., Takahashi S., Komukai T. 2006. Simultaneous determination of pesticides in agricultural products by LC/MS/MS using clean-up with ultrafiltration. Journal of the Food Hygienic Society of Japan 47 (4): 137–145. DOI:
https://doi.org/ 10.3358/shokueishi.47.137.
31.
He Y., Xiao S., Dong T., Nie P. 2019. Gold nanoparticles for qualitative detection of deltamethrin and carbofuran residues in soil by surface enhanced Raman scattering (SERS). International Journal of Molecular Sciences 20 (7): 1731. DOI:
https://doi.org/10.3390/ijms20....
32.
Hussain M., Nafady A., Avci A., Pehlivan E., Nisar J., Sherazi S.T.H., Balouch A., Shah M.R., Almaghrabi O.A., Ul--Haq M.A. 2019. Biogenic silver nanoparticles for trace colorimetric sensing of enzyme disrupter fungicide vinclozolin. Nanomaterials 9 (11): 1604. DOI:
https://doi.org/10.3390/nano91....
33.
Jiang X., Li D., Xu X., Ying Y., Li Y., Ye Z., Wang J. 2008. Immunosensors for detection of pesticide residues. Biosensors and Bioelectronics 23 (11): 1577–1587. DOI:
https://doi.org/10.1016/j.bios....
34.
Kang J.Y., Zhang Y.J., Li X., Dong C., Liu H.Y., Miao L.J., Low P.J., Gao Z.X., Hosmane N.S., Wu A.G. 2018. Rapid and sensitive colorimetric sensing of the insecticide pymetrozine using melamine-modified gold nanoparticles. Analytical Methods 10: 417–421. DOI:
https://doi.org/10.1039/C7AY02....
35.
Kant R. 2020. Surface plasmon resonance based fiber-optic nanosensor for the pesticide fenitrothion utilizing Ta2O5 nanostructures sequestered onto a reduced graphene oxide matrix. Microchimica Acta 187 (8): 1–11. DOI:
https://doi.org/10.1007/s00604....
37.
Khaledian S., Noroozi-Aghideh A., Kahrizi D., Moradi S., Abdoli M., Ghasemalian A.H., Heidari M.F. 2021. Rapid detection of diazinon as an organophosphorus poison in real samples using fluorescence carbon dots. Inorganic Chemistry Communications 130: 108676. DOI:
https://doi.org/10.1016/j.inoc....
38.
Kim K.H., Kabir E., Jahan S.A. 2017. Exposure to pesticides and the associated human health effects. Science of The Total Environment 575: 525–535. DOI:
https://doi.org/10.1016/j.scit....
39.
Kodir A., Imawan C., Permana I. S., Handayani W. 2016. Pesticide colorimetric sensor based on silver nanoparticles modified by L-cysteine. International Seminar on Sensors, Instrumentation, Measurement and Metrology 43–47. DOI:
https://doi.org/10.1109/ISSIMM....
40.
Kolesnyk S., Bubalo N., Prodanchuk M., Zhminko P. 2019. Differences in classification for skin corrosion/irritation in EU and Ukraine: Case study of alternative (in vitro and in silico) methods application for classification of pesticide active ingredient imazamox. Toxicology in Vitro 60: 71–75. DOI:
https://doi.org/10.1016/j.tiv.....
41.
Kong X.P., Zhang B.H., Wang J. 2021. Multiple roles of mesoporous silica in safe pesticide application by nanotechnology: A review. Journal of Agricultural and Food Chemistry 69 (24): 6735–6754. DOI:
https://doi.org/10.1021/acs.ja....
42.
Kosamu I., Kaonga C., Utembe W. 2020. A critical review of the status of pesticide exposure management in Malawi. International Journal of Environmental Research and Public Health 17 (18): 6727. DOI:
https://doi.org/10.3390/ijerph....
43.
Kumar S., Bhanjana G., Sharma A., Sidhu M., Dilbaghi N. 2014. Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydrate Polymers 101: 1061-1067. DOI:
https://doi.org/10.1016/j.carb....
44.
Li H., Guo J., Ping H., Liu L., Zhang M., Guan F., Sun C., Zhang Q. 2011. Visual detection of organophosphorus pesticides represented by mathamidophos using Au nanoparticles as colorimetric probe. Talanta 87: 93–99. DOI:
https://doi.org/10.1016/j.tala....
45.
Liang W., Wang B., Cheng J., Xiao D., Xie Z., Zhao J. 2021. 3D, eco-friendly metal-organic frameworks@ carbon nanotube aerogels composite materials for removal of pesticides in water. Journal of Hazardous Materials 401: 123718. DOI:
https://doi.org/10.1016/j.jhaz....
46.
Liang Y., Wang S., Jia H., Yao Y., Song J., Dong H., Cao Y., Zhu F., Huo Z. 2022. Pectin functionalized metal-organic frameworks as dual-stimuli-responsive carriers to improve the pesticide targeting and reduce environmental risks. Colloids and Surfaces B: Biointerfaces 219: 112796. DOI:
https://doi.org/10.1016/j.cols....
47.
Liang Y., Wang S., Jia H., Yao Y., Song J., Yang W., Cao Y., Zhu F., Huo Z. 2022. pH/redox/α-amylase triple responsive metalorganic framework composites for pest management and plant growth promotion. Microporous and Mesoporous Materials 344: 112230. DOI:
https://doi.org/10.1016/j.micr....
48.
Liu B., Gong H., Wang Y., Zhang X., Li P., Qiu Y., Wang L., Hua X., Guo Y., Wang M. 2018. A gold immunochromatographic assay for simultaneous detection of parathion and triazophos in agricultural products. Analytical Methods 10: 422–428. DOI:
https://doi.org/10.1039/C7AY02....
49.
Liu B., Zhang J., Chen C., Wang D., Tian G., Zhang G., Cai D., Wu Z. 2021. Infrared-light-responsive controlled-release pesticide using hollow carbon microspheres polyethylene glycol/α-cyclodextrin gel. Journal of Agricultural and Food Chemistry 69 (25): 6981–6988. DOI:
https://doi.org/10.1021/acs.ja....
50.
Ma Y., Zhao R., Shang H., Zhen S., Li L., Guo X., Yu M., Xu Y., Feng J., Wu X. 2022. pH-responsive ZIF-8-based metal–organic-framework nanoparticles for termite control. ACS Applied Nano Materials 5 (8): 11864–11875. DOI:
https://doi.org/10.1021/acsanm....
51.
Maghsoudi A.S., Hassani S., Mirnia K., Abdollahi M. 2021. Recent advances in nanotechnology-based biosensors development for detection of arsenic, lead, mercury, and cadmium. International Journal of Nanomedicine 16: 803–832. DOI:
https://doi.org/10.2147/IJN.S2....
52.
Manimaran K., Murugesan S., Ragavendran C., Balasubramani G., Natarajan D., Ganesan A. Seedevi P. 2021. Biosynthesis of tio 2 nanoparticles using edible mushroom (pleurotus djamor) extract: Mosquito larvicidal, histopathological, antibacterial and anticancer effect. Journal of Cluster Science 32: 1229–1240. DOI:
https://doi.org/10.1007/s10876....
53.
Maroni M., Fanetti A. C., Metruccio F. 2006. Risk assessment and management of occupational exposure to pesticides in agriculture. La Medicina del Lavoro 97 (2): 430–437.
54.
Matisová E., Hrouzková S. 2012. Analysis of endocrine disrupting pesticides by capillary GC with mass spectrometric detection. International Journal of Environmental Research and Public Health 9 (9): 3166–3196. DOI:
https://doi.org/10.3390/ijerph....
55.
Matysiak M., Kruszewski M., Jodlowska-Jedrych B., Kapka--Skrzypczak L. 2016. Effect of Prenatal Exposure to Pesticides on Children’s Health. Journal of Environmental Pathology, Toxicology and Oncology 35 (4): 375–386. DOI:
https://doi.org/ 10.1615/JEnvironPatholToxicolOncol.2016016379.
56.
Mauffret A., Baran N., Joulian C. 2017. Effect of pesticides and metabolites on groundwater bacterial community. Science of the Total Environment 576: 879–887. DOI:
https://doi.org/10.1016/j.scit....
57.
Mendez O.E., Astete C.E., Cueto R., Eitzer B., Hanna E.A., Salinas F., Tamez C., Wang Y., White J.C., Sabliov C.M. 2022. Lignin nanoparticles as delivery systems to facilitate translocation of methoxyfenozide in soybean (Glycine max). Journal of Agriculture and Food Research 7: 100259. DOI:
https://doi.org/10.1016/j.jafr....
58.
Mohammed A.A., Jaber N.Q. 2022. Stability and performance studies of emulsion liquid membrane on pesticides removal using mixture of Fe3O4Â nanoparticles and span80. Environmental Advances 9: 100294. DOI:
https://doi.org/10.1016/j.enva....
59.
Mojiri A., Zhou J.L., Robinson B., Ohashi A., Ozaki N., Kindaichi T., Farraji H., Vakili M. 2020. Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere 253: 126646. DOI:
https://doi.org/10.1016/j.chem....
60.
Mosa M.A., El-Abeid S.E., Khalifa M., Elsharouny T., El-Baz S.M., Ahmed A.Y. 2022. Smart pH responsive system based on hybrid mesoporous silica nanoparticles for delivery of fungicide to control Fusarium crown and root rot in tomato. Journal of Plant Pathology 104: 979–992. DOI:
https://doi.org/10.1007/s42161....
61.
Motoki Y., Iwafune T., Seike N., Inao K., Otani T. 2016. Effect of time-dependent sorption on the dissipation of waterextractable pesticides in soils. Journal of Agricultural and Food Chemistry 64 (22): 4478–4486. DOI:
https://doi.org/10.1021/acs.ja....
62.
Nagaraj S., Manivannan S., Narayan S. 2021. Potent antifungal agents and use of nanocarriers to improve delivery to the infected site: A systematic review. Journal of Basic Microbiology 61 (10): 849–873. DOI:
https://doi.org/10.1002/jobm.2....
63.
Nageswara Rao T., Prashanthi Y., Ahmed F., Kumar S., Arshi N., Rajasekhar Reddy G., Manohra Naidu T. 2021. Photocatalytic applications of Fe–Ag Co-doped TiO2 nanoparticles in removal of flumioxazin pesticide residues in water. Frontiers in Nanotechnology 3: 652364. DOI:
https://doi.org/10.3389/fnano.....
64.
Narenderan S., Meyyanathan S., Karri V.V.S.R. 2019. Experimental design in pesticide extraction methods: A review. Food Chemistry 289: 384–395. DOI:
https://doi.org/10.1016/j.food....
65.
Onwona-Kwakye M., Hogarh J.N., Van Den Brink P.J. 2020. Environmental risk assessment of pesticides currently applied in Ghana. Chemosphere 254: 126845. DOI:
https://doi.org/10.1016/j.chem....
66.
Pallavi P., Sharmiladevi P., Haribabu V., Girigoswami K., Girigoswami A. 2022. A nano approach to formulate photosensitizers for photodynamic therapy. Current Nanoscience 18 (6): 675–689. DOI:
https://doi.org/10.2174/157341....
67.
Pan H., Li W., Wu L., Huang W., Zhang F. 2021. β-cyclodextrin-modified mesoporous silica nanoparticles with photo-esponsive gatekeepers for controlled release of hexaconazole. Coatings 11 (12): 1489. DOI:
https://doi.org/10.3390/coatin....
68.
Poornima G., Harini K., Pallavi P., Gowtham P., Girigoswami K., Girigoswami A. 2022. RNA–A choice of potential drug delivery system. International Journal of Polymeric Materials and Polymeric Biomaterials 72 (10): 778–792. DOI:
https://doi.org/10.1080/009140....
69.
Porto L.S., Ferreira L.F., Dos Santos W.T.P., Pereira A.C. 2022. Determination of organophosphorus compounds in water and food samples using a non-enzymatic electrochemical sensor based on silver nanoparticles and carbon nanotubes nanocomposite coupled with batch injection analysis. Talanta 246: 123477. DOI:
https://doi.org/10.1016/j.tala....
70.
Prudnikova S., Streltsova N., Volova T. 2021. The effect of the pesticide delivery method on the microbial community of field soil. Environmental Science and Pollution Research 28: 8681–8697. DOI:
https://doi.org/10.1007/s11356....
71.
Qin Y., Ye G., Liang H., Li M., Zhao J. 2022. An amplified fluorescence polarization assay for sensitive sensing of organophosphorus pesticides via MnO2 nanosheets. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 269: 120759. DOI:
https://doi.org/10.1016/j.saa.....
72.
Rawtani D., Khatri N., Tyagi S., Pandey G. 2018. Nanotechnology-based recent approaches for sensing and remediation of pesticides. Journal of Environmental Management 206: 749–762. DOI:
https://doi.org/10.1016/j.jenv....
73.
Rizo J., Díaz D., Reyes-Trejo B., Arellano-Jiménez M.J. 2020. Cu2O nanoparticles for the degradation of methyl parathion. Beilstein Journal of Nanotechnology 11: 1546–1555. DOI:
https://doi.org/10.3762/bjnano....
74.
Rong Y., Li H., Ouyang Q., Ali S., Chen Q. 2020. Rapid and sensitive detection of diazinon in food based on the FRET between rare-earth doped upconversion nanoparticles and graphene oxide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 239: 118500. DOI:
https://doi.org/10.1016/j.saa.....
75.
Saini R.K., Bagri L.P., Bajpai A.K. 2017. Smart nanosensors for pesticide detection. New Pesticides and Soil Sensors: 519–559. DOI:
https://doi.org/10.1016/B978-0....
76.
Samsidar A., Siddiquee S., Shaarani S. M. 2018. A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends in Food Science & Technology 71: 188–201. DOI:
https://doi.org/10.1016/j.tifs....
77.
Sánchez M.T., Flores-Rojas K., Guerrero J.E., Garrido-Varo A., Pérez-Marín D. 2010. Measurement of pesticide residues in peppers by near-infrared reflectance spectroscopy. Pest Management Science: formerly Pesticide Science 66 (6): 580–586. DOI:
https://doi.org/10.1002/ps.191....
78.
Sap-Iam N., Homklinchan C., Larpudomlert R., Warisnoicharoen W., Sereemaspun A., Dubas S. 2010. UV irradiationinduced silver nanoparticles as mosquito larvicides. Journal of Applied Sciences 10 (23): 3132–3136.
79.
Sereni J.G.R. 2016. Magnetic systems: specific heat. Reference Module in Materials Science and Materials Engineering: 4983–4996. DOI:
https://doi.org/10.1016/B978-0....
80.
Sessink P. 2019. Biomonitoring great, but do it the right way. Journal of Oncology Pharmacy Practice 25 (1): 246–247.
81.
Shan P., Lu Y., Lu W., Yin X., Liu H., Li D., Lian X., Wang W., Li Z., Li Z. 2022. Biodegradable and light-responsive polymeric nanoparticles for environmentally safe herbicide delivery. ACS Applied Materials & Interfaces 14 (38): 43759–43770. DOI:
https://doi.org/10.1021/acsami....
82.
Sharma A., Kumar V., Shahzad B., Tanveer M., Sidhu G.P.S., Handa N., Kohli S.K., Yadav P., Bali A.S., Parihar R.D. 2019. Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences 1: 1446. DOI:
https://doi.org/10.1007/s42452....
83.
Sharmiladevi P., Akhtar N., Haribabu V., Girigoswami K., Chattopadhyay S., Girigoswami A. 2019. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Applied Bio Materials 2 (4): 1634–1642. DOI:
https://doi.org/10.1021/acsabm....
84.
Sharmiladevi P., Breghatha M., Dhanavardhini K., Priya R., Girigoswami K., Girigoswami A. 2021. Efficient wormlike micelles for the controlled delivery of anticancer drugs. Nanoscience & Nanotechnology-Asia 11 (3): 350–356. DOI:
https://doi.org/10.2174/221068....
85.
Sharmiladevi P., Girigoswami K., Haribabu V., Girigoswami A. 2021. Nano-enabled theranostics for cancer. Materials Advances 2: 2876–2891. DOI:
https://doi.org/10.1039/D1MA00....
86.
Sharmiladevi P., Haribabu V., Girigoswami K., Farook A.S., Girigoswami A. 2017. Effect of mesoporous nano water reservoir on MR relaxivity. Scientific Reports 7: 11179. DOI:
https://doi.org/10.1038/s41598....
87.
Shrivas K., Sahu S., Sahu B., Kurrey R., Patle T.K., Kant T., Karbhal I., Satnami M.L., Deb M.K., Ghosh K.K. 2019. Silver nanoparticles for selective detection of phosphorus pesticide containing π-conjugated pyrimidine nitrogen and sulfur moieties through non-covalent interactions. Journal of Molecular Liquids 275: 297–303. DOI:
https://doi.org/10.1016/j.moll....
88.
Singh R., Kumar N., Mehra R., Kumar H., Singh V. P. 2020. Progress and challenges in the detection of residual pesticides using nanotechnology based colorimetric techniques. Trends in Environmental Analytical Chemistry 26: e00086. DOI:
https://doi.org/10.1016/j.teac....
89.
Souza G.D.S., Costa L.C.A.D., Maciel A.C., Reis F.D.V., Pamplona Y.D.A.P. 2017. Presence of pesticides in atmosphere and risk to human health: a discussion for the environmental surveillance. Ciencia & Saude Coletiva 22 (10): 3269–3280. DOI:
https://doi.org/10.1590/1413-8....
90.
Soylak M., Agirbas M., Yilmaz E. 2021. A new strategy for the combination of supramolecular liquid phase microextraction and UV–Vis spectrophotometric determination for traces of maneb in food and water samples. Food Chemistry 338: 128068. DOI:
https://doi.org/10.1016/j.food....
91.
Sun J., Guo L., Bao Y., Xie J. 2011. A simple, label-free AuNPs-based colorimetric ultrasensitive detection of nerve agents and highly toxic organophosphate pesticide. Biosensors and Bioelectronics 28 (1): 152–157. DOI:
https://doi.org/10.1016/j.bios....
92.
Sur S., Sathiavelu M. 2022. A concise overview on pesticide detection and degradation strategies. Environmental Pollutants and Bioavailability 34 (1): 112–126. DOI:
https://doi.org/10.1080/263959....
93.
Suratman S., Edwards J.W., Babina K. 2015. Organophosphate pesticides exposure among farmworkers: pathways and risk of adverse health effects. Reviews on Environmental Health 30 (1): 65–79. DOI:
https://doi.org/10.1515/reveh-....
94.
Suri C.R., Boro R., Nangia Y., Gandhi S., Sharma P., Wangoo N., Rajesh K., Shekhawat G. 2009. Immunoanalytical techniques for analyzing pesticides in the environment. TrAC Trends in Analytical Chemistry 28 (1): 29–39. DOI:
https://doi.org/10.1016/j.trac....
95.
Takahashi M. 2006. Practical use and technical notice of LC/MS/MS for routine analysis of pesticide residues in agricultural products. Journal of the Food Hygienic Society of Japan 47 (4): J276–J277.
96.
Talari F.F., Bozorg A., Faridbod F., Vossoughi M. 2021. A novel sensitive aptamer-based nanosensor using rGQDs and MWCNTs for rapid detection of diazinon pesticide. Journal of Environmental Chemical Engineering 9 (1): 104878. DOI:
https://doi.org/10.1016/j.jece....
97.
Tefera Y.M., Thredgold L., Pisaniello D., Gaskin S. 2019. The greenhouse work environment: a modifier of occupational pesticide exposure. Journal of Environmental Science and Health, Part B 54 (10): 817–831. DOI:
https://doi.org/10.1080/036012....
99.
Tonogai Y. 2004. Establishment of simultaneous determination method of pesticides in foods. Journal of the Food Hygienic Society of Japan 45 (4): J219–21.
100.
Torrens F., Castellano G. 2014. Molecular classification of pesticides including persistent organic pollutants, phenylurea and sulphonylurea herbicides. Molecules 19 (6): 7388–7414. DOI:
https://doi.org/10.3390/molecu....
101.
Tranfo G. 2020. The growing importance of the human biomonitoring of exposure. International Journal of Environmental Research and Public Health 17 (11): 3934. DOI:
https://doi.org/10.3390/ijerph....
102.
Tudi M., Li H., Li H., Wang L., Lyu J., Yang L., Tong S., Yu Q. J., Ruan H. D., Atabila A. 2022. Exposure routes and health risks associated with pesticide application. Toxics 10 (6): 335. DOI:
https://doi.org/10.3390/toxics....
103.
Tümay S.O., Şenocak A., Sari E., Şanko V., Durmuş M., Demirbas E. 2021. A new perspective for electrochemical determination of parathion and chlorantraniliprole pesticides via carbon nanotube-based thiophene-ferrocene appended hybrid nanosensor. Sensors and Actuators B: Chemical 345: 130344. DOI:
https://doi.org/10.1016/j.snb.....
104.
Turusov V., Rakitskiĭ V. 1997. Classification of pesticides according to carcinogenicity to man. Voprosy Onkologii 43 (3): 299–303.
106.
Wan M., Song S., Feng W., Shen H., Luo Y., Wu W., Shen J. 2022. Metal–organic framework (UiO-66)-based temperatureresponsive pesticide delivery system for controlled release and enhanced insecticidal performance against Spodoptera frugiperda. ACS Applied Bio Materials 5 (8): 4020–4027. DOI:
https://doi.org/10.1021/acsabm....
107.
Wang Z., Huang Y., Wang D., Sun L., Dong C., Fang L., Zhang Y., Wu A. 2018. A rapid colorimetric method for the detection of deltamethrin based on gold nanoparticles modified with 2-mercapto-6-nitrobenzothiazole. Analytical Methods 10: 1774–1780. DOI:
https://doi.org/10.1039/C8AY00....
108.
Wang Y., Song S., Chu X., Feng W., Li J., Huang X., Zhou N., Shen J. 2021. A new temperature-responsive controlled-release pesticide formulation–poly (N-isopropylacrylamide) modified graphene oxide as the nanocarrier for lambdacyhalothrin delivery and their application in pesticide transportation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 612: 125987. DOI:
https://doi.org/10.1016/j.cols....
109.
Wang P., Wan Y., Ali A., Deng S., Su Y., Fan C., Yang S. 2016. Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. Science China Chemistry 59: 237–242. DOI:
https://doi.org/10.1007/s11426....
110.
Wang X., Yang Y., Dong J., Bei F., Ai S. 2014. Lanthanum-functionalized gold nanoparticles for coordination-bonding recognition and colorimetric detection of methyl parathion with high sensitivity. Sensors and Actuators B: Chemical 204: 119–124. DOI:
https://doi.org/10.1016/j.snb.....
111.
Watanabe M., Ueno E., Inoue T., Ohno H., Ikai Y., Morishita T., Oshima H., Hayashi R. 2013. Simultaneous determination of pesticide residues in agricultural products by LC-MS/MS. Journal of the Food Hygienic Society of Japan 54: 14–24. DOI:
https://doi.org/10.3358/shokue....
113.
Wu L., Pan H., Huang W., Hu Z., Wang M., Zhang F. 2022. pH and Redox Dual-Responsive Mesoporous Silica Nanoparticle as Nanovehicle for Improving Fungicidal Efficiency. Materials 15 (6): 2207. DOI:
https://doi.org/10.3390/ma1506....
114.
Xiong D., Li H. 2008. Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water. Nanotechnology 19 (46): 465502. DOI:
https://doi.org/10.1088/0957-4....
115.
Xu W.S., Zhang G.Y., Liu H. 2022. Light and temperature dual responsive pesticide release system based on mesoporous silica nanoparticles modified by dopamine. Journal of Central South University 29: 397–409. DOI:
https://doi.org/10.1007/s11771....
116.
Yadav I.C., Devi N.L., Syed J.H., Cheng Z., Li J., Zhang G., Jones K. C. 2015. Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: A comprehensive review of India. Science of the Total Environment 511: 123–137. DOI:
https://doi.org/10.1016/j.scit....
117.
Zhang C., Jiang Z., Jin M., Du P., Chen G., Cui X., Zhang Y., Qin G., Yan F., Abd El-Aty A. 2020. Fluorescence immunoassay for multiplex detection of organophosphate pesticides in agro-products based on signal amplification of gold nanoparticles and oligonucleotides. Food chemistry 326: 126813. DOI:
https://doi.org/10.1016/j.food....
118.
Zhang R., Zhang Z., Li R., Tan Y., Lv S., Mcclements D. J. 2020. Impact of pesticide type and emulsion fat content on the bioaccessibility of pesticides in natural products. Molecules 25 (6): 1466. DOI:
https://doi.org/10.3390/molecu....
119.
Zhang X., Tang X., Zhao C., Yuan Z., Zhang D., Zhao H., Yang N., Guo K., He Y., He Y. 2022. A pH-responsive MOF for site-specific delivery of fungicide to control citrus disease of Botrytis cinerea. Chemical Engineering Journal 431 (3): 133351. DOI:
https://doi.org/10.1016/j.cej.....
120.
Zhang S.X., Xue S.F., Deng J., Zhang M., Shi G., Zhou T. 2016. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides. Biosensors and bioelectronics 85: 457–463. DOI:
https://doi.org/10.1016/j.bios....
121.
Zhao J., Song R., Li H., Zheng Q., Li S., Liu L., Li X., Bai L., Liu K. 2022. New Formulation to Accelerate the Degradation of Pesticide Residues: Composite Nanoparticles of Imidacloprid and 24-Epibrassinolide. ACS Omega 7 (33): 29027–29037. DOI:
https://doi.org/10.1021/acsome....
122.
Zhao W., Liu Y., Zhang P., Zhou P., Wu Z., Lou B., Jiang Y., Shakoor N., Li M., Li Y. 2022. Engineered Zn-based nano-pesticides as an opportunity for treatment of phytopathogens in agriculture. NanoImpact 28: 100420. DOI:
https://doi.org/10.1016/j.impa....
123.
Zheng Q., Yu Y., Fan K., Ji F., Wu J., Ying Y. 2016. A nano-silver enzyme electrode for organophosphorus pesticide detection. Analytical and Bioanalytical Chemistry 408: 5819–5827. DOI:
https://doi.org/10.1007/s00216....
124.
Zhong X., Wen H., Zeng R., Deng H., Su G., Zhou H., Zhou X. 2022. Zein-functionalized mesoporous silica as nanocarriers for nanopesticides with pH/enzyme dual responsive properties. Industrial Crops and Products 188: 115716. DOI:
https://doi.org/10.1016/j.indc....