ORIGINAL ARTICLE
Rosemary essential oil nanoemulsion, formulation, characterization and acaricidal activity against the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae)
,
 
Sahar I. Afia 2, A-F
,
 
,
 
 
 
More details
Hide details
1
Pesticide Chemistry Department, National Research Centre (NRC), 12622, Dokki, Giza, Egypt
 
2
Pests and Plant Protection Department, National Research Centre (NRC), 12622, Dokki, Giza, Egypt
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2018-10-26
 
 
Acceptance date: 2019-03-05
 
 
Online publication date: 2019-03-26
 
 
Corresponding author
Abdel-Tawab H. Mossa   

Pesticide Chemistry Department, National Research Centre (NRC), 12622, Dokki, Giza, Egypt
 
 
Journal of Plant Protection Research 2019;59(1):102-112
 
KEYWORDS
TOPICS
ABSTRACT
The adverse effects of synthetic acaricides on humans, animals, non-target organisms and the ecosystem are serious problems. Thus, there is a new trend to use nanotechnology for developing new, natural, bio and safe acaricides for mite control in green-pest management. This is the first work for preparing a nanoformulation of rosemary essential oil (EO) and evaluating its effect against the two-spotted spider mite Tetranychus urticae Koch. GC/MS analysis of rosemary EO showed that 1,8 cineole (31.45%), borneol (11.07%), α-pinene (10.91%), D-limonene (9.19%), L-linalool (8.86%), D-camphor (7.32%), γ-terpinene (3.92%), linalyl acetate (3.37%), α-terpineol (3.32%), and p-cymene (1.82%) were the major components. After 6 min of sonication, a nanoemulsion of rosemary EO was formulated with a droplet size of 139.9 nm. The balance between oil (lyophilic) and surfactant (hydrophilic) was correlated with the droplet size and the stability of the nanoemulsion. Spray application of rosemary nanoemulsion showed high acaricidal activity against immature and adult two-spotted spider mites T. urticae with LC50 723.71 and 865.68 μg · ml−1 and the toxicity increased by 54.15 and 52.69% for immature and adult mites, respectively. There were no toxic effects or mortality of rats treated with rosemary nanoemulsion. High acaricidal activity, stability, and safety of rosemary nanoemulsion make this nanoformulation a possible green and nano-acaricidal product. Further studies under field conditions are necessary to study the acaricidal efficiency of rosemary nanoemulsion against two-spotted spider mites and the toxic effect on predacious mites.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (49)
1.
Abbassy M.A., Marei A.M., Al-Ashkar M.A.M., Mossa A.H. 2014. Adverse biochemical effects of various pesticides on sprayers of cotton fields in El-Behira Governorate, Egypt. Biomedicine and Aging Pathology 4 (3): 251–256. DOI: 10.1016/j.biomag.2014.04.004.
 
2.
Attia S., Grissa K.L., Ghrabi Z.G., Mailleux A.C., Lognay G., Hance T. 2012. Acaricidal activity of 31 essential oils extracted from plants collected in Tunisia. Journal of Essential Oil Research 24 (3): 279−288. DOI: https://doi.org/10.1080/104129....
 
3.
Bakr E.M. 2000. ‘LdP Line Software. URL: Http://Www.Ehabsoft.Com/Ldpline/.
 
4.
Damalas C.A., Eleftherohorinos I.G. 2011. Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health 8 (5): 1402−1419. DOI:10.3390/ijerph8051402.
 
5.
Espinosa D.S.S., Brignole E.A. 2005. Citrus peel oil deterpenation with supercritical fluids: optimal process and solvent cycle design. The Journal of Supercritical Fluids 35 (1): 49−61. DOI: https://doi.org/10.1016/j.supf....
 
6.
Duarte J.L., Jesús R.R.A., Anna E.M.F.M.O., Rodrigo A.S.C., Adriana M.F., Raimundo N.P.S., Deborah Q.F., José C.T.C., Caio P.F. 2015. Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Revista Brasileira de Farmacognosia 25 (2): 189−192. DOI: http://dx.doi.org/10.1016/j.bj....
 
7.
Ebadollahi A., Jalali Sendi J., Aliakbar A., Razmjou J. 2014. Chemical composition and acaricidal effects of essential oils of Foeniculum vulgare Mill. (Apiales: Apiaceae) and Lavandula angustifolia Miller (Lamiales: Lamiaceae) against Tetranychus urticae Koch (Acari: Tetranychidae). Psyche: A Journal of Entomology 2014: ID 424078, 6 pp. DOI: http://dx.doi.org/10.1155/2014....
 
8.
El-Ghorab A.H. 2003. Supercritical fluid extraction of the Egyptian rosemary (Rosmarinus officinalis) leaves and Nigella sativa L. seeds volatile oils and their antioxidant activities. Journal of Essential Oil Bearing Plants 6 (2): 67–77. DOI: https://doi.org/10.1080/0972-0....
 
9.
Elamrani A., Zrira S., Benjilali B., Berrada M. 2000. A study of Moroccan rosemary oils. Journal of Essential Oil Research 12 (4): 487−495. DOI: https://doi.org/10.1080/104129....
 
10.
Hamzavi F., Moharramipour S. 2017. Chemical composition and antifeedant activity of essential oils from Eucalyptus camaldulensis and Callistemon viminalis on Tribolium confusum. International Journal of Agricultural Technology 13 (3): 413−424.
 
11.
Finney D. 1971. Probit Analysis : Statistical Treatment of the Sigmoid Response Curve. 3rd ed. Cambridge: Cambridge University Press. Available on: http://www.worldcat.org/title/... [Accessed: September 15, 2018].
 
12.
Ghosh V., Saranya S., Mukherjee A., Chandrasekaran N. 2013. Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. Journal of Nanoscience and Nanotechnology 13 (1): 114−122. DOI: https://doi.org/10.1166/jnn.20....
 
13.
Ismail M.S., Soliman M.F., Abo-Ghalia A.H., Ghallab M.M. 2015. The acaricidal activity of some essential and fixed oils against the two-spotted spider mite in relation to different temperatures. International Journal of Pest Management 61 (2): 121−125. DOI: https://doi.org/10.10801018378....
 
14.
Kim H.K., Lee S.J., Hwang B.Y., Yoon J.U., Kim G.H. 2018. Acaricidal and repellent effects of Cnidium officinale-derived material against Dermanyssus gallinae (Acari: Dermanyssidae). Experimental and Applied Acarology 74: 403–414. DOI: https://doi.org/10.1007/s10493....
 
15.
Kim Y., Park H., Cho J., Ahn Y. 2006. Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus utricae (Acari: Tetranychidae). Journal of Economic Entomology 99: 954–958.
 
16.
Kimbaris A.C., Siatis N.G., Pappas C.S., Tarantilis P.A., Daferera D.J., Polissiou M.G. 2006. Quantitative analysis of garlic (Allium sativum) oil unsaturated acyclic components using FT-Raman spectroscopy. Food Chemistry 94 (2): 287−295. DOI: 10.1016/j.foodchem.2005.01.017.
 
17.
Lee B.H., Choi W.S., Lee S.E., Park B.S. 2001. Fumigant toxicity of essential oils and their constituent compounds towards the rice weevil, Sitophilus oryzae (L.). Crop Protection 20 (4): 317−320. DOI: https://doi.org/10.1016/S0261-....
 
18.
Lee M.J., Park J.H., Lee H.S. 2018. Acaricidal toxicities and synergistic activities of Salvia lavandulifolia oil constituents against synanthropic mites. Pest Management Science 74 (11): 2468−2479. DOI: 10.1002/ps.4924.
 
19.
Mansour S.A., Mossa A.H. 2010. Oxidative damage, biochemical and histopathological alterations in rats exposed to chlorpyrifos and the antioxidant role of zinc. Pesticide Biochemistry and Physiology 96 (1): 14–23. DOI:10.1016/j.pestbp.2009.08.008.
 
20.
Marzouk M.A., Mossa A.H., Sabra F.S. 2012. Cytogenetic effects of technical and formulated tribenuron-methyl on rat bonemarrow cells. Journal of Pharmacology and Toxicology 7 (7): 330−337. DOI: 10.3923/jpt.2012.330.337.
 
21.
Miller G.T., Spoolman S. 2014. Sustaining the Earth. Cengage Learning, 384 pp. Available on: https://lukminmincuk21.blogspo....
 
22.
Mossa A.H. 2016. Green pesticides: essential oils as biopesticides in insect-pest management. Journal of Environmental Science and Technology 9 (5): 354−378. DOI: 10.3923/jest.2016.354.378.
 
23.
Mossa A.H., Abbassy M.A. 2012. Adverse haematological and biochemical effects of certain formulated insecticides in male rats. Research Journal of Environmental Toxicology 6 (4): 160−168. DOI: 10.3923/rjet.2012.160.168.
 
24.
Mossa A.H., Abdel Rasoul M.A., Mohafrash S.M.M. 2017. Lactational exposure to abamectin induced mortality and adverse biochemical and histopathological effects in suckling pups. Environmental Science and Pollution Research 24 (11): 10150−10165. DOI:10.1007/s11356-017-8600-x.
 
25.
Mossa A.H., Abdelfattah N.A.H., Mohafrash S.M.M. 2017. Nanoemulsion of camphor (Eucalyptus globulus) essential oil, formulation, characterization and insecticidal activity against Wheat weevil, Sitophilus granarius. Asian Journal of Crop Science 9 (3): 50−62. DOI:10.3923/ajcs.2017.50.62.
 
26.
Mossa A.H., Afia S.I., Mohafrash S.M.M., Abou-Awad B.A. 2017. Formulation and characterization of garlic (Allium sativum L.) essential oil nanoemulsion and its acaricidal activity on eriophyid olive mites (Acari: Eriophyidae). Environmental Science and Pollution Research 25 (11): 10526−10537. DOI: 10.1007/s11356-017-0752-1.
 
27.
Mossa A.H., Swelam E.S., Mohafrash S.M.M. 2015. Sub-chronic exposure to fipronil induced oxidative stress, biochemical and histotopathological changes in the liver and kidney of male albino rats. Toxicology Reports 2: 775−784. DOI:10.1016/j.toxrep.2015.02.009.
 
28.
Mossa A.H., Ibrahim F.M., Mohafrash S.M.M., Abou Baker D.H., El Gengaihi S. 2015. Protective effect of ethanolic extract of grape pomace against the adverse effects of cypermethrin on weanling female rats. Evidence-Based Complementary and Alternative Medicine 2015: ID 381919, 10 pp. DOI: http://dx.doi.org/10.1155/2015....
 
29.
Mossa A.H., Refaie A.A., Ramadan A. 2011. Effect of exposure to mixture of four organophosphate insecticides at no observed adverse effect level dose on rat liver: the protective role of vitamin C. Research Journal of Environmental Toxicology 5 (6): 323−335. DOI: 10.3923/rjet.2011.323.335.
 
30.
Nechita I.S., Poirel M.T., Cozma V., Zenner L. 2015. The repellent and persistent toxic effects of essential oils against the poultry red mite, Dermanyssus gallinae. Veterinary parasitology 214 (3−4): 348−352. DOI: https://doi.org/10.1016/j.vetp....
 
31.
NRC (National Research Council). 2010. Guide for the care and use of laboratory animals. The National Academies Press, Washington, 220 pp.
 
32.
WHO (World Health Organization). 1992. The WHO recommended classification of pesticides by hazard and guidelines to classification 1992−1993 (No. WHO/PCS/92.14). World Health Organization, Geneva.
 
33.
Pavela R. 2015. Essential oils for the development of ecofriendly mosquito larvicides: a review. Industrial crops and products 76: 174−187. DOI: https://doi.org/10.1016/j.indc....
 
34.
Pree D.J., Bittner L.A., Whitty K.J. 2002. Characterization of resistance to clofentezine in populations of European red mite from orchards in Ontario. Experimental and Applied Acarology 27 (3): 181−193. DOI: 10.1023/a:1021624421016.
 
35.
Rattan R.S. 2010. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection 29 (9): 913−920. DOI: https://doi.org/10.1016/j.crop....
 
36.
Raut J.S., Karuppayil S.M. 2014. A status review on the medicinal properties of essential oils. Industrial Crops and Products 62: 250−264. DOI: https://doi.org/10.1016/j.indc....
 
37.
Reverchon E., Senatore F. 1992. Isolation of rosemary oil: Comparison between hydrodistillation and supercritical CO2 extraction. Flavour and Fragrance Journal 7 (4): 227–230. DOI: https://doi.org/10.1002/ffj.27....
 
38.
Rodrigues E.D.C., Ferreira A.M., Vilhena J.C., Almeida F.B., Cruz R.A., Florentino A.C., Souto R.N., Carvalho J.C., Fernandes C.P. 2014. Development of a larvicidal nanoemulsion with Copaiba (Copaifera duckei) oleoresin. Revista Brasileira de Farmacognosia 24 (6): 699−705. DOI: http://dx.doi.org/10.1016/j.bj....
 
39.
Rossi Y.E., Palacios S.M. 2015. Insecticidal toxicity of Eucalyptus cinerea essential oil and 1,8-cineole against Musca domestica and possible uses according to the metabolic response of flies. Industrial Crops and Products 63: 133−137. DOI: https://doi.org/10.1016/j.indc....
 
40.
Samojlik I., Lakic N., Mimica-Dukic N., Đaković-Švajcer K., Bozin B. 2010. Antioxidant and hepatoprotective potential of essential oils of coriander (Coriandrum sativum L.) and caraway (Carum carvi L.) (Apiaceae). Journal of Agricultural and Food Chemistry 58 (15): 8848−8853. DOI: 10.1021/jf101645n.
 
41.
Sertkaya E., Kaya K., Soylu S. 2010. Acaricidal activities of the essential oils from several medicinal plants against the carmine spider mite (Tetranychus cinnabarinus Boisd.) (Acarina: Tetranychidae). Industrial Crops and Products 31 (1): 107−112. DOI: https://doi.org/10.1016/j.indc....
 
42.
Sugumar S., Clarke S.K., Nirmala M.J., Tyagi B.K., Mukherjee A., Chandrasekaran N. 2014. Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bulletin of Entomological Research 104 (3): 393−402. DOI: 10.1017/S0007485313000710.
 
43.
Tak J.H., Isman M.B. 2017. Acaricidal and repellent activity of plant essential oil-derived terpenes and the effect of binary mixtures against Tetranychus urticae Koch (Acari: Tetranychidae). Industrial Crops and Products 108: 786−792. DOI: https://doi.org/10.1016/j.indc....
 
44.
Tak J.H., Jovel E., Isman M.B. 2016. Comparative and synergistic activity of Rosmarinus officinalis L. essential oil constituents against the larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Pest Management Science 72 (3): 474−480. DOI: https://doi.org/10.1002/ps.401....
 
45.
Tucker A.O., Maciarello M.J. 1986. The essential oils of some rosemary cultivars. Flavour and Fragrance Journal 1 (4−5): 137−142. DOI: https://doi.org/10.1002/ffj.27....
 
46.
Waliwitiya R., Kennedy C.J., Lowenberger C.A. 2009. Larvicidal and oviposition-altering activity of monoterpenoids, transanithole and rosemary oil to the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Pest Management Science 65 (3): 241−248. DOI: 10.1002/ps.1675.
 
47.
Yang F.L., Li X.G., Zhu F., Lei C.L. 2009. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Agricultural and Food Chemistry 57 (21): 10156−10162. DOI: 10.1021/jf9023118.
 
48.
Yang Y.C., Lee H.S., Clark J.M., Ahn Y.J. 2004. Insecticidal activity of plant essential oils against Pediculus humanus capitis (Anoplura: Pediculidae). Journal of Medical Entomology 41 (4): 699−704. DOI: https://doi.org/10.1603/0022-2....
 
49.
Zandi-Sohani N., Ramezani L. 2015. Evaluation of five essential oils as botanical acaricides against the strawberry spider mite Tetranychus turkestani Ugarov and Nikolskii. International Biodeterioration and Biodegradation 98: 101−106. DOI: https://doi.org/10.1016/j.ibio....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top