ORIGINAL ARTICLE
Role of metabolic enzymes in resistance to chlorpyrifos-methyl in the cowpea aphid, Aphis craccivora (Koch)
 
More details
Hide details
1
Department of Standard Rearing, Central Agricultural Pesticides Laboratory, Agriculture Research Center, 12618 Giza, Egypt
 
2
Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
 
 
Submission date: 2017-06-02
 
 
Acceptance date: 2017-09-01
 
 
Corresponding author
El-Sayed Mohammad Soliman Mokbel
Department of Standard Rearing, Central Agricultural Pesticides Laboratory, Agriculture Research Center, 12618 Giza, Egypt
 
 
Journal of Plant Protection Research 2017;57(3):275-280
 
KEYWORDS
TOPICS
ABSTRACT
The cowpea aphid, Aphis craccivora management relies mainly on chemical control. As a result extensive and repeated treatment of insecticides has led to the development of aphid resistance to commonly used insecticides. To investigate chlorpyrifos-methyl resistance in A. craccivora, a field strain was selected for 24-generations to achieve a resistance factor of 82.3 fold compared with a susceptible strain. In the resistant strain, malathion and lambda-cyhalothrin exhibited obvious cross-resistance; while fenvalerate and dinotefuran showed moderate cross-resistance. In contrast, slight or no cross-resistance was obtained with the other tested insecticides. To investigate metabolic resistance mechanisms, integration of biochemical and synergism assays was conducted. Results showed the key role of esterase (EST) and mixed function oxidases (MFO); however, glutathione-s-transferase (GST) contributed less to resistance. Cross-resistance studies showed the need for rotation with non-cross resistant insecticides as a resistance management tactic.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (23)
1.
Abbott W. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18 (2): 265–267. DOI: https://doi.org/10.1093/jee/18....
 
2.
Abdallah I.S., Abou-Yousef H.M., Fouad E.A., Kandil M.A. 2016. The role of detoxifying enzymes in the resistance of the cowpea aphid (Aphis craccivora Koch) to thiamethoxam. Journal of Plant Protection Research 56 (1): 67–72. DOI: https://doi.org/10.1515/jppr-2....
 
3.
Andrew R.J., Silver H., Van Emden F., Battersby M. 2006. A biochemical mechanism of resistance to pirimicarb in two glasshouse clones of Aphis gossypii. Pest Management Science 43 (1): 21–29. DOI: 10.1002/ps.2780430104.
 
4.
Anonymous 2009. Arthropod pesticide resistance database http://www.pesticideresistance. org/search/1.
 
5.
Cao C.W., Zhang J., Gao X.W., Liang P., Guo H.L. 2008. Overexpression of carboxylesterase gene associated with organophosphorus insecticide resistance in cotton aphid, Aphis gossypii (Glover). Pesticide Biochemistry and Physiology 90: 175–180. DOI: https://doi.org/10.1016/j.pest....
 
6.
Costa L.G. 2006. Current issues in organophosphate toxicology. Clinica Chimica Acta 366 (1–2): 1–13. DOI: 10.1016/j.cca.2005.10.008.
 
7.
Criniti A., Mazzoni E., Cassanelli S., Cravedi P., Tondelli A., Bizzaro D., Manicardi G.C. 2008. Biochemical and molecular diagnosis of insecticide resistance conferred by esterase, MACE, kdr and super kdr based mechanisms in Italian strains of the peach potato aphid, Myzus Persicae (Sulzer). Pesticide Biochemistry and Physiology 90 (3): 168–174. DOI: https://doi.org/10.1016/j.pest....
 
8.
Devonshire A.L. 1977. The properties of a carboxylesterase from the peach potato aphid, Myzus persicae (Sulz.) and its role in conferring insecticides resistance. Biochemical Journal 167: 675–683. DOI: 10.1042/bj1670675.
 
9.
El-Ghareeb M., Nasser M.A.K., El-Sayed A.M.K., Mohamed G.A. 2002. Possible mechanisms of insecticide resistance in cowpea aphid, Aphis craccivora (Koch). The role of general esterase and oxidase enzymes in insecticide resistance of cowpea. The First Conference of the Central Agricultural Pesticide Laboratory, 3–5 September 2: 635–649.
 
10.
Finney D. 1971. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve, 3rd ed. Cambridge University Press, London, 333 pp.
 
11.
Fouad E.A., Abou-Yousef H.M., Abdalla I.S., Kandil M.A. 2016. Resistance monitoring and enzyme activity in three field populations of cowpea aphid (Aphis craccivora) from Egypt. Crop Protection 81: 163–167. DOI: https://doi.org/10.1016/j.crop....
 
12.
Guo Y.C., Zhang S.X., Zhao L.J., Chu C.F. 1996. Studies on resistance trends of cotton aphid and cotton bollworm to fenvalerate in field. Acta Agriculturae Universitatis Henanensis 30 (3): 284–287.
 
13.
Habig W.H., Pabst M.J., Jakoby W.B. 1974. Glutathione-S-transferases: The first step in mercapturic acid formation. Journal of Biological Chemistry 249 (22): 7130–7139.
 
14.
Kandil M.A., Abdallah I.S., Abou-Yousef H.M., Abdallah N.A., Fouad E.A. 2017. Mechanism of resistance to pirimicarb in the cowpea aphid, Aphis craccivora. Crop Protection 94: 73–177. DOI: https://doi.org/10.1016/j.crop....
 
15.
Kandil M.A., Radwan E.M.M., Swelam E.S.H., El-Deeb W.M.H., Mokbel E.M.S. 2013. Characterization and possible mechanisms of acetamiprid resistance in the cowpea aphid, Aphis craccivora (Koch). Bulletin of the Entomological Society of Egypt 90: 1–13.
 
16.
Laamari M., Khelfa L., Coeur d’Acier A. 2008. Resistance source to cowpea aphid (Aphis craccivora Koch) in broad bean (Vicia faba L.) Algerian landrace collection. African Journal of Biotechnology 7 (14): 2486–2490.
 
17.
Lee S.E., Lees M. 2001. Biochemical mechanisms of resistance in strains of Oryzaephilus surinamensis (Coleoptera: Silvanidae) resistant to malathion and chlorpyrifos-methyl. Journal of Economic Entomology 94 (3): 706–713. DOI: https://doi.org/10.1603/0022-0....
 
18.
Mokbel E.M.S., Mohamed A.I. 2009. Development of resistance in field strain of Aphis craccivora to the dinotefuran insecticides from the new class neonicotinoids and its effect on some enzymes content. Egyptian Academic Journal of Biological Sciences 1 (1): 65–69.
 
19.
Mokbel E.M.S. 2015. Prediction of resistance and its stability of cowpea aphid, Aphis craccivora (Koch) to chlorpyrifos-methyl. Egyptian Scientific Journal of Pesticides 1 (4): 24–29.
 
20.
Moores G.D., Gao X., Denholm I., Devonshir A.L. 1996. Characterization of insensitive acetylcholinesterase in insecticide resistant cotton aphids, Aphis gossypii Glover (Homoptera: Aphididae). Pesticide Biochemistry and Physiology 56 (2): 102–110. DOI: https://doi.org/10.1006/pest.1....
 
21.
Suzuki K., Hama H., Konno Y. 1993. Carboxylesterase of the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae), responsible for fenitrothion resistance as a sequestering protein. Applied Entomology and Zoology 28 (4): 439–450.
 
22.
Van Asperen K. 1962. A study of housefly esterases by means of a sensitive colorimetric method. Journal of Insect Physiology 8 (4): 401–414. DOI: https://doi.org/10.1016/0022-1....
 
23.
Wang K.Y., Liu T.X., YU C.H., Jiang X.Y., Yi M.Q. 2002. Resistance of Aphis gossypii (Homoptera: Aphididae) to fenvalerate and imidacloprid and activities of detoxification enzymes on cotton and cucumber. Journal of Economic Entomology 95 (2): 2–11. DOI: https://doi.org/10.1603/0022-0....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top