ORIGINAL ARTICLE
 
KEYWORDS
TOPICS
ABSTRACT
Deformed wing virus (DWV) is one of the most widespread viral infections of European honey bee Apis mellifera L. worldwide. So far, this is the first study which tested the effect of different ratios of synthetic protein to fat (P : F) diets on the health of broodless nurseaged honey bees in the laboratory. The aim of the current study was to determine the load of DWV in the whole body of A. mellifera that were fed different ratios of P : F diets (25 : 1, 10 : 1, 5 : 1, 1 : 1, 1 : 5, 1 : 10, 1 : 12.5 and 1 : 0 as a control). The methods involved feeding bees the tested diets for 10 days and then measuring the virus titre using qPCR technique. The results showed that DWV concentration decreased as the fat content of diets consumed increased. The copy number of viral genomes declined from 7.5 × 105 in the zero-fat diet (1 : 0) to 1.6 × 102 virus genomes in 1 : 12.5 (P : F). We can conclude that there is a positive relationship between fat diets and bee immunity and overall results suggest a connection between fat diet and bee health, indicating that colony losses can be reduced by providing a certain protein and fat supplemental feeding.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (28)
1.
Alaux C., Dantec C., Parrinello H., Le Conte Y. 2011. Nutrigenomics in honey bees: digital gene expression analysis of pollen’s nutritive effects on healthy and varroa-parasitized bees. BMC genomics 12 (1): 496. DOI: https://doi:10.1186/1471-2164-....
 
2.
Alaux C., Ducloz F., Crauser D., Le Conte Y. 2010. Diet effects on honeybee immunocompetence. Biology Letters: rsbl20090986. DOI: https://doi: 10.1186/1471-2164-12-496.
 
3.
Basualdo M., Barragan S., Vanagas L., Garcia C., Solana H., Rodriguez E., Bedascarrasbure E. 2013. Conversion of high and low pollen protein diets into protein in worker honey bees (Hymenoptera: Apidae). Journal of Economic Entomology 106 (4): 1553–1558. DOI: https://doi: 10.1603/ec12466.
 
4.
Benaets K., Van Geystelen A., Cardoen D., De Smet L., de Graaf D. C., Schoofs L., Larmuseau M.H., Brettell L.E., Martin S.J., Wenseleers T. 2017. Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proceedings of the Royal Society B: Biological Sciences 284 (1848), 25 pp. DOI: https://http://dx.doi.org/10.1....
 
5.
Branchiccela B., Castelli L., Corona M., Díaz-Cetti S., Invernizzi C., de la Escalera G.M., Mendoza Y., Santos E., Silva C., Zunino P. 2019. Impact of nutritional stress on the honeybee colony health. Scientific Reports 9 (1): 1–11. DOI: https://doi.org/10.1038/s41598....
 
6.
Brodschneider R., Crailsheim K. 2010. Nutrition and health in honey bees. Apidologie 41 (3): 278–294. DOI: https://doi.org/10.1051/apido/....
 
7.
Crailsheim K. 1991. Interadult feeding of jelly in honeybee (Apis mellifera L.) colonies. Journal of Comparative Physiology B 161 (1): 55–60. DOI: https://doi.org/10.1007/BF0025....
 
8.
Dainat B., Evans J.D., Chen Y.P., Gauthier L., Neumann P. 2012. Predictive markers of honey bee colony collapse. PLoS One 7 (2): e32151. DOI: https:// doi: 10.1371/journal.pone.0032151.
 
9.
DeGrandi-Hoffman G., Chen Y., Huang E., Huang M.H. 2010. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). Journal of Insect Physiology 56: 1184–1191. DOI: https://doi: 10.1016/j.jinsphys.2010.03.017.
 
10.
deGroot A. 1953. Protein and amino acid requirements of the honey bee (Apis mellifera L.). Phys. Comp. Oec. 3: 197–285. DOI: https://doi.org/10.1007/BF0217....
 
11.
Di Pasquale G., Salignon M., Le Conte Y., Belzunces L.P., Decourtye A., Kretzschmar A., Suchail S., Brunet J.-L., Alaux C. 2013. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter? PloS One 8 (8): e72016. DOI: https://doi.org/10.1371/journa....
 
12.
Di Prisco G., Annoscia D., Margiotta M., Ferrara R., Varricchio P., Zanni V., Caprio E., Nazzi F., Pennacchio F. 2016. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proceedings of the National Academy of Sciences 113 (12): 3203–3208. DOI: https://doi.org/10.1073/pnas.1....
 
13.
Forzan M., Felicioli A., Sagona S., Bandecchi P., Mazzei M. 2017. Complete genome sequence of deformed wing virus isolated from Vespa crabro in Italy. Genome Announc 5 (40): e00961–00917. DOI: https:// doi: 10.1128/genomeA.00961-17.
 
14.
Goodman W.G., Cusson M. 2012. The juvenile hormones p. 310–365. In: “Insect Endocrinology” (L.I. Gilbert, ed.). San Diego, Academic Press. CA, USA.
 
15.
Goulson D., Nicholls E., Botías C., Rotheray E.L. 2015. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347 (6229): 1–16. DOI: 10.1126/science.1255957.
 
16.
Highfield A.C., El Nagar A., Mackinder L.C., Noel L.M., Hall M.J., Martin S.J., Schroeder D.C. 2009. Deformed wing virus implicated in overwintering honeybee colony losses. Applied Environmental Microbiology 75 (22): 7212–7220. DOI: https://doi: 10.1128/AEM.02227-09.
 
17.
Im S.-S., Yousef L., Blaschitz C., Liu J.Z., Edwards R.A., Young S.G., Raffatellu M., Osborne T.F. 2011. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metabolism 13 (5): 540–549. DOI: https://doi.10.1016/j.cmet.201....
 
18.
Jackman J.A., Cho N.-J. 2020. Supported lipid bilayer formation: beyond vesicle fusion. Langmuir 36 (6): 1387–1400. DOI: 10.1021/acs.langmuir.9b03706.
 
19.
Martin S.J., Brettell L.E. 2019. Deformed wing virus in honeybees and other insects. Annual Review of Virology 6: 49–69. DOI: https://doi.org/10.1146/annure....
 
20.
Moore J., Jironkin A., Chandler D., Burroughs N., Evans D.J., Ryabov E.V. 2011. Recombinants between Deformed wing virus and Varroa destructor virus-1 may prevail in Varroa destructor-infested honeybee colonies. Journal of General Virology 92 (1): 156–161. DOI: 10.1099/vir.0.025965-0.
 
21.
Ponton F., Wilson K., Cotter S.C., Raubenheimer D., Simpson S.J. 2011. Nutritional immunology: a multi-dimensional approach. PLoS Pathogens 7 (12): e1002223. DOI: https://doi.org/10.1371/journa....
 
22.
Ponton F., Wilson K., Holmes A.J., Cotter S.C., Raubenheimer D., Simpson S.J. 2013. Integrating nutrition and immunology: a new frontier. Journal of Insect Physiology 59 (2): 130–137. DOI: https://doi.org/10.1016/j.jins....
 
23.
Roulston T.A.H., Cane J.H., Buchmann S.L. 2000. What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecological Monographs 70 (4): 617–643. DOI: https://doi.org/10.1890/0012-9....
 
24.
Smilanich A.M., Mason P.A., Singer M.S. 2014. Ecological immunology mediated by diet in herbivorous insects. Integrative and Comparative Biology 54 (5): 913–921. DOI: https://doi: 10.1093/icb/icu089.
 
25.
Staroscik A. 2004. Calculator for determining the number of copies of a template. URI Genomics and Sequencing Center.
 
26.
Tantillo G., Bottaro M., Di Pinto A., Martella V., Di Pinto P., Terio V. 2015. Virus infections of honeybees Apis mellifera. Italian Journal of Food Safety 4 (3): 5364–5364. DOI: https://doi: 10.4081/ijfs.2015.5364.
 
27.
Vaudo A.D., Stabler D., Patch H.M., Tooker J.F., Grozinger C.M., Wright G.A. 2016. Bumble bees regulate their intake of essential protein and lipid pollen macronutrients. Journal of Experimental Biology 219 (24): 3962–3970. DOI: https://doi: 10.1242/jeb.140772.
 
28.
Winston M.L. 1991. The Biology of the Honey Bee. Harvard University Press, Cambridge, USA. 281 pp.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top