ORIGINAL ARTICLE
Production, characterization and iron binding affinity of hydroxamate siderophores from rhizosphere associated fluorescent Pseudomonas
More details
Hide details
1
Department of Biotechnology, School of Science, Jain University, Bangalore 18/3, 9th Main, 3rd Block, Jayanagar, Bangalore 560011, India
Submission date: 2017-09-05
Acceptance date: 2017-12-12
Corresponding author
Belur Satyan Kumudini
Department of Biotechnology, School of Science, Jain University, Bangalore 18/3, 9th Main, 3rd Block, Jayanagar, Bangalore 560011, India
Journal of Plant Protection Research 2018;58(1):36-44
KEYWORDS
TOPICS
ABSTRACT
Fluorescent Pseudomonas (FP) is a major group of plant growth promoting rhizobacteria
and a well-known synthesizer of siderophores, which imparts a selective advantage on
rhizosphere competence and their biocontrol traits. The present study was aimed at examining the factors affecting the production of siderophores and their potential biocontrol traits. Sixteen FP isolates were shortlisted based on their siderophore-producing ability in chrome azural S medium. The isolates were checked for variations in siderophore production under varying incubation times, temperatures, pH, iron (Fe3+) concentrations and mutagens. In addition, the iron binding affinity of siderophores, mycelial inhibition assay and plant growth promotion traits were assessed. Results showed that the siderophore production was highly influenced by the time of incubation, changes in pH, temperature and iron concentration. Chemical characterization showed that the produced siderophores were hydroxamates. Maximum siderophore production was observed at pH 7 whereas UV and EtBr exposure invariably suppressed siderophore production drastically in all isolates. All FPs from maize rhizosphere showed excellent siderophore production which could be due to the competence in strategy-II of the plant rhizosphere and significant growth inhibition on Fusarium oxysporum. Our results suggest the inclination of siderophores to iron, in terms of various criteria affecting production and the possible role of environmental mutations that affect the natural iron harvesting mechanism.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (54)
1.
Adler C., Corbala N.S., Seyedsayamdost M.R., Pomares M.F., de Cristobal R.E., Clardy J., Kolter R., Vincent P.A. 2012. Catecholate siderophores protect bacteria from pyochelin toxicity. PloS One 7 (10): e46754. DOI:
https://doi.org/10.1371/journa....
2.
Ahmed E., Holmström S.J.M. 2014. Siderophores in environmental research: roles and applications. Microbiology and Biotechnology 7 (3): 196–208. DOI:
https://doi.org/10.1111/1751-7....
3.
Alexander B., Zuberer D.A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils 12 (1): 39–45. DOI:
https://doi.org/10.1007/bf0036....
4.
Ali S.S., Vidhale N.N. 2011. Evaluation of siderophore produced by different clinical isolate Pseudomonas aeruginosa. Indian Journal of Medical Research 3 (3): 131–135. DOI:
https://doi.org/10.9735/0975-5....
5.
Anitha G., Kumudini B.S. 2014. Isolation and characterization of fluorescent pseudomonads and their effect on plant growth promotion. Journal of Environmental Biology 35: 627–634.
6.
Arnow L.E. 1937. Colorimetric determination of the components of 3,4-ihydroxyphenylalanin tyrosine mixtures. Journal of Biological Chemistry 118: 531.
7.
Baakza A.A., Vala A.K., Dave B.P., Dube H.C. 2004. A comparative study of siderophore production by fungi from marine and terrestrial habitats. Journal of Experimental Marine Biology and Ecology 311 (1): 1–9. DOI:
https://doi.org/10.1016/j.jemb....
8.
Beneduzi A., Ambrosini A., Passaglia L.M. 2012. Plant growth promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and Molecular Biology 35 (4): 1044–1051. DOI:
https://doi.org/10.1590/s1415-....
9.
Bhattacharya A. 2010. Siderophore mediated metal uptake by Pseudomonas fluorescens and its comparison to iron (iii)chelation. Ceylon Journal of Sciences 39 (2): 147–155. DOI:
https://doi.org/10.4038/cjsbs.....
10.
Cappuccino J.C., Sherman N. 2013. Microbiology: A Laboratory Manual. 10th ed. Pearson Publishing, New York, USA, 560 pp.
11.
Cycoń M., Piotrowska-Seget Z. 2007. Effect of selected pesticides on soil microflora involved in organic matter and nitrogen transformations: Pot experiment. Polish Journal of Ecology 55 (2): 207–220.
12.
Duffy B.K., Défago G. 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Applied and Environmental Microbiology 65 (6): 2429–2438.
13.
Fallahzadeh-Mamaghani V., Ahmadzadeh M., Sharifi R. 2009. Screening systemic resistance-inducing fluorescent pseudomonads for control of bacterial blight of cotton caused by Xanthomonas campestris pv. malvacearum. Journal of Plant Pathology 91 (3): 663–670. DOI:
http://dx.doi.org/10.4454/jpp.....
14.
Gaonkar T., Nayak P.K., Garg S., Bhosle S. 2012. Siderophoreproducing bacteria from a sand dune ecosystem and the effect of sodium benzoate on siderophore production by a potential isolate. Scientific World Journal 112: 1–8. DOI:
https://doi.org/10.1100/2012/8....
15.
Gawel D., Maliszewska-Tkacyk M., Schaaper J.P.R.M., Fijalkowska I.J. 2012. Lack of strand bias in UV-induced mutagenesis in Escherichia coli. Bacteriology 184 (6): 4449–4454. DOI:
https://doi.org/10.1128/jb.184....
16.
Gupta V., Saharan K., Kumar L., Gupta R., Sahai V., Mittal A. 2008. Spectrophotometric ferric ion biosensor from Pseudomonas fluorescens culture. Biotechnology and Bioengineering 100 (2): 284–296. DOI:
https://doi.org/10.1002/bit.21....
17.
Helmy M., Baddar D., El’Masry M.H. 2008. Affinity purification of a siderophore that exhibits an antagonistic effect against soft rot bacterium. Biochemistry 73 (7): 776–782. DOI:
https://doi.org/10.1134/s00062....
18.
Hemanth G., Kumar P.K.R., Niharika P.S., Kolli S.K. 2016. Fungicides effect on soil micro flora in Tekkali Mandal, Srikakulam (Dist). International Journal of Research and Development in Pharmacy and Life Sciences 5 (4): 2245–2250.
19.
Jenifer A.M.R., Reena A., Aysha O.S., Valli S., Nirmala P., Vinothkumar P. 2013. Isolation of siderophore producing bacteria from rhizosphere soil and their antagonistic activity against selected fungal plant pathogens. International Journal of Current Microbiology and Applied Science 2 (1): 59–65.
20.
Jin C.W., Li G.X., Yu X.H., Zheng S.J. 2010. Plant Fe status affects the composition of siderophore-secreting microbes in the rhizosphere. Annals of Botany 105 (5): 835–841. DOI:
https://doi.org/10.1093/aob/mc....
21.
Kamal F., Mehrgan H., Assadi M.M., Mortazavi S.A. 2003. Mutagenesis of Xanthomonas campestris and selection of strains with enhanced xanthan production. Iranian Biomedical Journal 7 (3): 91–98.
22.
Karimi K., Amini J., Harighi B., Bahramnejad B. 2012. Evaluation of biocontrol potential of Pseudomonas and Bacillus spp. against Fusarium wilt of chickpea. Australasian Journal of Crop Sciences 6 (4): 695–703.
23.
Khan H., Parmar N., Kahlon R.S. 2016. Pseudomonas-plant interactions I: Plant growth promotion and defense-mediated mechanisms. p. 419–469. In: “Pseudomonas: Molecular and Applied Biology” (R. Kahlon, ed.). Springer International Publishing, Switzerland.
24.
Kozmin S., Slezak G., Reynaud-Angelin A., Elie C., de Rycke Y., Boiteux S., Sage E. 2008. UVA radiation is highly mutagenic in cells that are unable to repair 7,8-dihydro-8-oxoguanine in Saccharomyces cerevisiae. Proceedings of National Academy of Sciences USA 102: 3538–13543.
25.
Krewulak K.D., Vogel H.J. 2008. Structural biology of bacterial iron uptake. Biochimica et Biophysica Acta 1778 (9): 1781–1804. DOI:
https://doi.org/10.1016/j.bbam....
26.
Kumudini B.S., Jayamohan N.S. & Patil S.V. 2017. Integrated mechanisms of plant disease containment by rhizospheric bacteria: Unraveling the signal cross-talk between plant and fluorescent Pseudomonas. p. 263–291. In: “Agriculturally Important Microbes for Sustainable Agriculture” (V. Meena, P. Mishra, J. Bisht, A. Pattanayak, eds.) Springer International Publishing. DOI:
https://doi.org/10.1007/978-98....
27.
Lee W., van Baalen M., Jansen V.A.A. 2011. An evolutionary mechanism for diversity in siderophore-producing bacteria. Ecology Letters 15 (2): 119–125. DOI:
https://doi.org/10.1111/j.1461....
28.
Lemanceau P., Bauer P., Kraemer S., Briat J.-F. 2009. Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant and Soil 321 (1–2): 513–535. DOI:
https://doi.org/10.1007/s11104....
29.
Lewin A.C., Doughtya P.A., Flegg L.A., Moore G.R., Spiro S. 2002. The ferric uptake regulator of Pseudomonas aeruginosa has no essential cysteine residues and does not contain a structural zinc ion. Microbiology 148 (8): 2449–2456. DOI:
https://doi.org/10.1099/002212....
30.
Lim C.K., Hassan K.A., Tetu S.G., Loper J.E., Paulsen I.T. 2012. The effect of iron limitation on the transcriptome and proteome of Pseudomonas fluorescens Pf-5. PLoS One 7 (6): e39139. DOI:
https://doi.org/10.1371/journa....
31.
Masaki J., Fujita M.J., Nakano K., Sakai R., Bisucaberin B. 2013. A linear hydroxamate class siderophore from the marine bacterium Tenacibaculum mesophilum. Molecules 18 (4): 3917–3926. DOI:
https://doi.org/10.3390/molecu....
32.
Meyer J.-M., Geoffroy V.A., Baida N., Gardan L., Izard D., Lemanceau P., Achouak W., Palleroni N.J. 2002. Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Applied and Environmental Microbiology 68 (6): 2745–2753. DOI:
https://doi.org/10.1128/aem.68....
33.
Miethke M., Marahiel M.A. 2007. Siderophore-based iron acquisition and pathogen control. Microbiology and Molecular Biology Reviews 71 (3): 413–451. DOI:
https://doi.org/10.1128/mmbr.0....
34.
Mishra P.K., Mishra S., Selvakumar G., Bisht S.C., Bisht S.C., Bisht J.K., Kundu S., Gupta H.S. 2008. Characterisation of a psychrotolerant plant growth promoting Pseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Annals of Microbiology 58 (4): 561–568. DOI:
https://doi.org/10.1007/bf0317....
35.
Murugappan R.M., Aravinth A., Karthikeyan M. 2011. Chemical and structural characterization of hydroxamate siderophore produced by marine Vibrio harveyi. Journal of Indian Microbiology and Biotechnology 38 (2): 265–273. DOI:
https://doi.org/10.1007/s10295....
36.
Nagata T., Oobo T., Aozasa O. 2013. Efficacy of a bacterial siderophore, pyoverdine, to supply iron to Solanum lycopersicum plants. Journal of Bioscience and Bioengineering 115 (6): 686–690. DOI:
https://doi.org/10.1016/j.jbio....
37.
Neilands J.B. 1981. Microbial iron compounds. Annual Review of Biochemistry 50: 715–731.
38.
Rajkumar M., Ae N., Prasad N.M.V., Freitas. H. 2009. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology 28 (3): 142–149. DOI:
https://doi.org/10.1016/j.tibt....
39.
Mendes R., Garbeva P., Raaijmakers J.M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37 (5): 634–663.
40.
Sah S., Singh R. 2015. Siderophore: Structural and functional characterisation – A comprehensive review. Agriculture 61 (3): 97–114. DOI:
https://doi.org/10.1515/agri-2....
41.
Saraf M., Pandya U., Thakkar A. 2014. Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol ofphytopathogens. Microbiology Research 169 (1): 18–29. DOI:
https://doi.org/10.1016/j.micr....
42.
Sayyed R.Z., Badguzar M.D., Sonawane H.M., Mhaske M.M., Chincholkar S.B. 2005. Production of microbial iron chelators (siderophores) by fluorescent pseudomonads. Indian Journal of Biotechnology 4: 484–490.
43.
Schwyn B., Neilands J.B. 1987. Universal chemical assay for the determination of siderophores. Analytical Biochemistry 56: 47–56.
44.
Sharma A., Johri B.N. 2003. Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiological Research 158 (3): 243–248. DOI:
https://doi.org/10.1078/0944-5....
45.
Snow G.A. 1954. Mycobactin, a growth factor for Mycobacterium johnei: II. Degradation and identification of fragments. Journal of Chemical Society: 2588–2596. DOI:
https://doi.org/10.1039/jr9540....
46.
Solanki M.K., Singh R.K., Srivastava S., Kumar S., Kashyap P.L., Srivastava A.K., Arora D.K. 2014. Isolation and characterization of siderophore producing antagonistic rhizobacteria against Rhizoctonia solani. Journal of Basic Microbiology 54 (6): 585–596. DOI:
https://doi.org/10.1002/jobm.2....
47.
Subramanian J., Satyan K. 2014. Isolation and selection of fluorescent pseudomonads based on multiple plant growth promotion traits and siderotyping. Chilean Journal of Agricultural Research 74 (3): 319–325. DOI:
https://doi.org/10.4067/s0718-....
48.
Tailor A.J., Joshi B.H. 2012. Characterization and optimization of siderophore production from Pseudomonas fluorescens strain isolated from sugarcane rhizosphere. International Journal of Engineering Research and Development 6 (3): 688–694.
49.
Tripathi M., Munot H.P., Shouche Y., Meyer J.M., Goel R. 2005. Isolation and functional characterization of siderophoreproducing lead- and cadmium-resistant Pseudomonas putida KNP9. Current Microbiology 50 (5): 233–237. DOI:
https://doi.org/10.1007/s00284...
50.
Varsha T., Kumudini B.S. 2016. Fluorescent Pseudomonas mediated alleviation of trivalent chromium toxicity in ragi through enhanced antioxidant activities. Proceedings of National Academy of Sciences India, Sect B Biological Sciences: 1–9. DOI:
https://doi.org/10.1007/s40011....
51.
Widmer F., Seidler R.J., Watrud L.S., Gillevet P.M., Di Giovanni G.D. 1998. A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples. Applied and Environmental Microbiology 64 (7): 2545–2553.
52.
Ye L., Ballet S., Hildebrand F., Laus G., Guillemyn K., Raes J., Matthijs S., Martins J., Cornelis P. 2014. A combinatorial approach to the structure elucidation of a pyoverdine siderophore produced by a Pseudomonas putida isolate and the use of pyoverdine as a taxonomic marker for typing P. putida subspecies. BioMetals 26 (4): 561–575. DOI:
https://doi.org/10.1007/s10534....
53.
Yimer A.M. 2015. Review on marvelous incidence of the iron observable in livelihood and its history. Natural Products Chemistry and Research 3 (5): 3–5. DOI:
https://doi.org/10.4172/2329-6....
54.
Zongzheng Y., Xin L., Zhong L., Jinzhao P., Jin Q., Wenyan Y. 2009. Effect of Bacillus subtilis SY1 on antifungal activity and plant growth. International Journal of Agricultural and Biological Engineering 2 (4): 55–56. DOI:
https://doi.org/10.3965/j.issn....