ORIGINAL ARTICLE
Polymorphism of ten new minisatellite markers in subpopulations of phytopathogenic fungus Leptosphaeria maculans differing with metconazole treatment
More details
Hide details
1
Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
2
Institute of Plant Protection – National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland
Corresponding author
Małgorzata Jędryczka
Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
Journal of Plant Protection Research 2010;50(1):103-109
KEYWORDS
TOPICS
ABSTRACT
Stem canker of brassicas is one of the most damaging diseases of oilseed rape worldwide. The disease is caused by two related Leptosphaeria species, and L. maculans is regarded as the more damaging one. Being an ascomycete, the pathogen is able to quickly create new variants that can overcome new resistance genes introduced by researchers and breeding companies. The aim of this work was to study polymorphism of L. maculans populations using 10 recently developed minisatellite markers. The studied
subpopulations differed with metconazole treatment. Seven minisatellite markers showed polymorphisms and formed alleles varying from 2 to 10 different core motifs, with 5 alleles on average. In total 36 alleles were found. The majority of alleles (72%) were found in both studied subpopulations of L. maculans. There were 28 alleles in the group of L. maculans isolates originating from plants not treated with any fungicide and 32 in the subpopulation treated with metconazole. Ten unique alleles and imbalanced ratios between some alleles contributed to differences between L. maculans subpopulations. The minisatellites MinLm555, MinLm935-2, MinLm939, MinLm1139 and MinLm2451 showed 6 new variants as compared to the isolates described so far.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (31)
1.
Attard A., Gourgues M., Gout L., Schmit J., Roux J., Narcy J.P., Balesdent M.H., Rouxel T. 2001. Molecular characterization and polymorphism of MinLm1, a minisatellite from the phytopathogenic ascomycete Leptosphaeria maculans. Curr. Genet. 40: 54–64.
2.
Eckert M., Gout L., Rouxel T., Blaise F., Jędryczka M., Fitt B., Balesdent M.H. 2005. Identification and characterization of polymorphic minisatellites in the phytopathogenic ascomycete Leptosphaeria maculans. Curr. Genet. 47: 37–48.
3.
Fitt B.D.L., Brun H., Barbetti M.J., Rimmer S.R. 2006. World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur. J. Plant Pathol. 114: 3–15.
4.
Hassan A.K.C., Schulz C., Sacristan M.D., Wöstemeyer J. 1991. Biochemical and molecular tools for the differentiation of aggressive and non-aggressive isolates of the oilseed rape pathogen, Phoma lingam. J. Phytopathol. 131: 120–136.
5.
Horowitz H., Haber J.E. 1984. Subtelomeric regions of yeast chromosomes contain a 36-base pair tandemly repeated sequence. Nucleic Acids Res. 12 (18): 7105–7121.
6.
Irzykowski W., Soldatova V., Gasich E., Razgulaeva N., Jędryczka M. 2005. RAPD analysis of Sclerotinia sclerotiorum from crucifers. IOBC/WPRS Bull. 28 (10): 69–82.
7.
Jeffreys A.J., Wilson V., Thein S.L. 1985. Individual-specific “fingerprints” of human DNA. Nature 316: 76–79.
8.
Jędryczka M. 2007. Epidemiology and damage caused by stem canker of oilseed rape in Poland. Phytopathol. Polonica 45: 73–75.
9.
Jędryczka M., Irzykowski W., Jajor E. 2009. Polimorfizm sekwencji MinLm2 chorobotwórczego grzyba Leptosphaeria maculans w populacji traktowanej i nie traktowanej metkonazolem. Prog. Plant Protection/Post. Ochr. Roślin 49 (3): 1273–1277.
10.
Jędryczka M., Rouxel T., Balesdent M.H. 1999. Rep-PCR based genomic fingerprinting of a Polish population of Leptosphaeria maculans. Eur. J. Plant Pathol. 105: 813–823.
11.
Johnson R.D., Lewis B.G. 1990. DNA polymorphism in Leptosphaeria maculans. Physiol. Mol. Plant Pathol. 37: 417–424.
12.
Kachlicki P., Jędryczka M. 1994. Properties of Phoma lingam (Tode ex Fr.) Desm. isolates from Poland. I. Secondary metabolites production. Phytopathol. Polonica 7 (XIX): 81–86.
13.
Khangura R.K., Barbetti M. 2001. Prevalence of blackleg (Leptosphaeria maculans) on canola (Brassica napus) in Western Australia. Aust. J. Exp. Agric. 41: 71–80.
14.
Kühn M.L., Gout L., Howlett B.J., Melayah D., Meyer M., Balesdent M.H., Rouxel T. 2006. Genetic linkage maps and genomic organization in Leptosphaeria maculans. Eur. J. Plant Pathol. 114 :17–31.
15.
Mendes-Pereira E., Balesdent M-H., Brun H., Rouxel T. 2003. Molecular phylogeny of the Leptosphaeria maculans-L. biglobosa species complex. Mycol. Res. 107: 1287–1304.
16.
Morales V., Séguin-Swartz G., Taylor J.L. 1993. Chromosome length polymorphism in Leptosphaeria maculans. Phytopathology 83: 503–509.
17.
Mrówczyński M., Pruszyński S. 2008. Integrowana Produkcja Rzepaku Ozimego i Jarego. Praca zbiorowa. Inst. Ochr. Roślin, Poznań, 107 pp.
18.
Patterson N.A., Kapoor M. 1995. Detection of additional restriction fragment length polymorphisms among the weakly virulent (nonaggressive) and highly virulent (aggressive) isolates of Leptosphaeria maculans. Can. J. Microbiol. 41: 1135–1141.
19.
Pedras M.S.C., Séguin-Swartz G. 1992. The blackleg fungus: phytotoxins and phytoalexins. Can. J. Plant Pathol. 14: 67–75.
20.
Pedras M.S.C., Biesenthal C.J. 2000. HPLC analyses of cultures of Phoma spp.: differentiation among groups and species through secondary metabolite profiles. Can. J. Microbiol. 46: 685–691.
21.
Pongam P., Osborn T.C., Williams P.H. 1999. Assessment of genetic variation among Leptosphaeria maculans isolates using pathogenicity data and AFLP analysis. Plant Dis. 83: 149–154.
22.
Purwantara A., Barrins J.M., Cozijnsen A.J., Ades P.K., Howlett B.J. 2000. Genetic diversity of isolates of the Leptosphaeria maculans species complex from Australia, Europe and North America using amplified fragment length polymorphism analysis. Mycol. Res. 104: 772–781.
23.
Rouxel T., Balesdent M.H. 2005. The stem canker (blackleg) fungus, Leptosphaeria maculans, enters the genomic era. Mol. Plant Pathol. 6: 225–241.
24.
Shoemaker R.A., Brun H. 2001. The teleomorph of the weakly aggressive segregate of Leptosphaeria maculans. Can. J. Bot. 79: 412–419.
25.
Stachowiak A. 2008. Genetyczna i Molekularna Charakterystyka Populacji Grzyba Leptosphaeria maculans Występujących na Terenie Europy. Praca doktorska, Instytut Genetyki Roślin PAN, Poznań, 200 pp.
26.
Taylor J.L., Borgmann I., Séguin-Swartz G. 1991. Electrophoretic karyotyping of Leptosphaeria maculans differentiates highly virulent from weakly virulent isolates. Curr. Genet. 19: 273–277.
27.
Vergnaud G., Denoeud F. 2000. Minisatellites: mutability and genome structure. Genome Res. 10: 899–907.
28.
Voigt K., Cozijnsen A.J., Kroymann J., Pöggeler S., Howlett B.J. 2005. Phylogenetic relationships between members of the crucifer pathogenic Leptosphaeria maculans species complex as shown by mating type (MAT1-2), actin, and β-tubulin sequences. Mol. Phylogenetics Evol. 37 (2): 541–557.
29.
Voigt K., Jędryczka M., Wöstemeyer J. 2001. Strain typing of Polish Leptosphaeria maculans isolates supports at the genomic level the multi-species concept of aggressive and non-aggressive strains. Microbiol. Res. 156 (2): 169–177.
30.
West J.S., Kharbanda P.D., Barbetti M.J., Fitt B.D.L. 2001. Epidemiology and management of L. maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol. 50: 10–27.
31.
Zhou Y., Fitt B.D.L., Welham S.J., Gladders P., Sansford C.E., West J.S. 1999. Effects of severity and timing of stem canker (Leptosphaeria maculans) symptoms on yield of winter oilseed rape (Brassica napus) in the UK. Eur. J. Plant Pathol. 105: 715–728.