ORIGINAL ARTICLE
Plant growth promotion of crops using phosphate solubilizing bacterial strains derived from insects
More details
Hide details
1
Plant Disease Clinic and Bank of Plant Pathogen, Institute of Plant Protection – National Research Institute, Poznań, Poland
2
Research Centre of Quarantine, Invasive and Genetically Modified Organisms, Institute of Plant Protection – National Research
Institute, Poznań, Poland
3
Virology and Bacteriology Department, Institute of Plant Protection – National Research Institute, Poznań, Poland
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2024-03-13
Acceptance date: 2024-06-03
Online publication date: 2024-09-03
Corresponding author
Krzysztof Krawczyk
Virology and Bacteriology Department, Institute of Plant Protection – National Research Institute, Poznań, Poland
Journal of Plant Protection Research 2024;64(3):321-335
HIGHLIGHTS
- Insect-derived bacteria display significant phosphate solubilization ability.
- Inoculation of soil with tested insect-derived bacteria increased plant weight compared to uninoculated controls.
- Increased plant weight correlated with higher phosphatase activity in the rhizosphere soil.
- Bacteria isolated from insects can be a promising source of phosphate solubilizing bacteria for plant growth promotion.
KEYWORDS
TOPICS
ABSTRACT
The aim of this study was to investigate insect derived bacteria for the ability to dissolve
insoluble soil phosphate to release soluble phosphorus compounds, available to plants.
Bacterial isolates were obtained from Diabrotica virgifera, Hermetia illucens, Oulema
melanopus, and Ostrinia nubilalis. An in vitro evaluation of phosphate solubilization ability
on Pikovskaya’s medium was done and the phosphate solubilizing index (PSI) was calculated
for each isolate. Bacteria were tested in a greenhouse experiment on seeds of oats,
wheat, triticale, barley and soybeans. After incubation, the weight and length of their aerial
plant parts were measured. The highest increase in the weight of aerial parts was recorded
for oats after using strain Om046 for inoculation (88.98%), then, wheat (Dv097, 31.43%),
soybean (strain 96, 53.79%), and triticale (bacterial consortium, 36.9%). Bacteria used were
identified as Lactococcus lactis (strains Om030 and Om046), Acinetobacter sp. (Dv123),
Lactococcus garvieae (Dv097) and Rothia kristinae (strains 90 and 96). We showed that
a successful application of insect derived bacteria for phosphate solubilization in soil, to
promote plant growth, is possible. Innovative agriculture requires constant improvements
in increasing crop growth. Thus, new sources of bacterial strains effectively promoting
plant growth, are needed. We described a new source of plant growth-promoting bacteria
that can be used in agriculture.
FUNDING
This research was done within the WIR-18 status project
of the Plant Protection Institute – National Research
Institute, Poznań, Poland.
RESPONSIBLE EDITOR
Agnieszka Synowiec
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (97)
1.
Abhyankar P.S., Gunjal A.B., Kapadnis B.P., Ambade S.V. 2022. Potential of lactic acid bacteria in plant growth promotion. Bhartiya Krishi Anusandhan Patrika 36: 326–329. DOI:
https://doi.org/10.18805/bkap3....
2.
Abou El-Yazeid A., Abou-Aly H.E. 2011. Enhancing growth, productivity and quality of tomato plants using phosphate solubilizing microorganisms. Australian Journal of Basic and Applied Sciences 5 (7): 371–379; ISSN 1991-8178.
3.
Afzal A., Bano A. 2008. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). International Journal of Agriculture and Biology 10 (1): 85–88.
4.
Afzal I., Shinwari Z.K., Sikandar S., Shahzad S. 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research 221 (2): 36–49 DOI:
https://doi.org/10.1016/j.micr....
5.
Ait-Ouakrim E.H., Abdelghani C., Cherkaoui E.M., Allal D., Soumia A., Saad I.-K., Bouchra B., Abdelkarim F.-M. 2023. Assessment of potent phosphate-solubilizing bacteria isolated from the olive tree rhizosphere grown on phosphate sludge and their effect on common bean growth. Geomicrobiology Journal 40 (6): 605–617. DOI:
https://doi.org/10.1080/014904....
6.
Ait-Ouakrim E.H., Chakhchar A., El Modafar C., Douira A., Amir S., Ibnsouda-Koraichi S., Belkadi B., Filali-Maltouf A. 2023b. Valorization of Moroccan phosphate sludge through isolation and characterization of phosphate solubilizing bacteria and assessment of their growth promotion effect on phaseolus vulgaris. Waste and Biomass Valorization 14: 2673–2690. DOI:
https://doi.org/10.1007/s12649....
7.
Al-Tammar F.K., Khalifa A.Y.Z. 2022. Plant growth promoting bacteria drive food security. Brazilian Journal of Biology 82: 1–11. DOI:
https://doi.org/10.1590/1519-6....
8.
Alam S., Khalil S., Ayub N., Rashid M. 2002. In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganisms (PSM) from maize rhizosphere. International Journal of Agriculture & Biology 4 (4): 454–458. DOI: 1560–8530/2002/04–4–454–458.
9.
Araujo L. 2004. Symbiosis of evolutionary techniques and statistical natural language processing. IEEE Transactions on Evolutionary Computation 8 (1): 14–27. DOI:
https://doi.org/10.1109/TEVC.2....
10.
Bakhshandeh E., Rahimian H., Pirdashti H., Nematzadeh G.A. 2015. Evaluation of phosphate-solubilizing bacteria on the growth and grain yield of rice (Oryza sativa L.) cropped in northern Iran. Journal of Applied Microbiology 119 (5): 1371–1382. DOI:
https://doi.org/10.1111/jam.12....
11.
Baroowa B., Paul S., Gogoi N. 2022. Role of phosphorus in imparting abiotic stress tolerance to plants. p. 239–262. In: “Climate Change and Agriculture: Perspectives, Sustainability and Resilience” (N. Benkeblia, ed.). Wiley. DOI:
https://doi.org/10.1002/978111....
12.
Bautista-Cruz A., Antonio-Revuelta B., del Carmen Martínez Gallegos V., Báez-Pérez A., 2019. Phosphate-solubilizing bacteria improve Agave angustifolia Haw. growth under field conditions. Journal of the Science of Food and Agriculture 99 (14): 6601–6607. DOI:
https://doi.org/10.1002/jsfa.9....
13.
Bhattacharya A. 2019. Changing environmental condition and phosphorus-use efficiency in plants. p. 241–305. In: „Changing Climate and Resource use Efficiency in Plants”. Elsevier, USA.
14.
Bielinska E.J. 2005. Oznaczenie Aktywnosci Fosfataz. Acta Agrophysica. Rozprawy i Monografie 2005 (3): 63–74.
15.
Chen Y.P., Rekha P.D., Arun A.B., Shen F.T., Lai W.A., Young C.C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology 34 (1): 33–41. DOI:
https://doi.org/10.1016/j.apso....
16.
Chen Z., Wang L., Cardoso J.A., Zhu S., Liu G., Rao I.M., Lin Y. 2023. Improving phosphorus acquisition efficiency through modification of root growth responses to phosphate starvation in legumes. Frontiers in Plant Science 14 (2): 1–15. DOI:
https://doi.org/10.3389/fpls.2....
17.
Compant S., Clément C., Sessitsch A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry 42 (5): 669–678. DOI:
https://doi.org/10.1016/j.soil....
18.
Cropotova J., Mozuraityte R., Standal I.B., Ojha S., Rustad T., Tiwari B. 2020. Influence of high-pressure processing on quality attributes of haddock and mackerel minces during frozen storage, and fishcakes prepared thereof. Innovative Food Science and Emerging Technologies 59 (9): 102236. DOI:
https://doi.org/10.1016/j.ifse....
19.
Dillon R.J., Dillon V.M. 2004. The gut bacteria of insects: nonpathogenic interactions. Annual Review of Entomology 49 (5): 71–92. DOI:
https://doi.org/10.1146/annure....
20.
Egamberdiyeva D., Juraeva D., Poberejskaya S., Myachina O., Teryuhova P., Seydalieva L. Aliev A. 1996. Improvement of wheat and cotton growth and nutrient uptake by phosphate solubilizing bacteria. Plant and Soil: 58–66.
21.
Erica de O.A. 2015. Rizobacteria in the control of pest insects in agriculture. African Journal of Plant Science 9 (9): 368–373. DOI:
https://doi.org/10.5897/ajps20....
22.
Feldhaar H. 2011. Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecological Entomology 36 (5): 533–543. DOI:
https://doi.org/10.1111/j.1365....
23.
Gadhave K.R., Holloway R. 2015. Interactions between plant growth promoting rhizobacteria, foliar-feeding insects and higher trophic levels. School of Biological Sciences Royal Holloway, University of London Egham, Surrey, TW20 0EX United Kingdom. A thesis [Online] [Available from:
https://core.ac.uk/reader/7729...] [Acessed 23 July 2024].
24.
Gond D.P., Jha S.S., Kumar A., Singh S.K. 2021. Plant growth promoting bacteria and its role in green remediation. Sustainable Environmental Clean-up: Green Remediation 149–163. DOI:
https://doi.org/10.1016/B978-0....
25.
Güneş A., Ataoǧlu N., Turan M., Eşitken A., Ketterings Q.M. 2009. Effects of phosphate-solubilizing microorganisms on strawberry yield and nutrient concentrations. Journal of Plant Nutrition and Soil Science 172 (3): 385–392. DOI:
https://doi.org/10.1002/jpln.2....
26.
Gupta G.N., Srivastava S., Khare S.K., Prakash V. 2014. Role of phosphate solubilizing bacteria in crop growth and disease management. Journal of Pure and Applied Microbiology 8 (1): 461–474.
27.
Gurmu S. 2023. Review on effect of phosphorous fertilizer and its availability on growth and development of maize (Zea mays L.). Journal of Environment and Earth Science 13 (4): 35–43. DOI:
https://doi.org/10.7176/jees/1....
28.
Hameeda B., Harini G., Rupela O.P. Wani S.P., Reddy G. 2008. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiological Research 163 (2): 234–242. DOI:
https://doi.org/10.1016/j.micr....
29.
He Z., Griffin T.S., Honeycutt C.W. 2004. Enzymatic hydrolysis of organic phosphorus in swine manure and soil. Journal of Environmental Quality 33 (1): 367–372. DOI:
https://doi.org/https://doi.or....
31.
Hussain M.I., Asghar H.N., Akhtar M.J., Arshad M. 2013. Impact of phosphate solubilizing bacteria on growth and yield of maize. Soil and Environment 32 (1): 71–78.
32.
Hyder S., Rizvi Z.F., los Santos-Villalobos S. de Santoyo G., Gondal A., Khalid N., Fatima S.N. Nadeem M., Rafique K., Rani A. 2023. Applications of plant growth-promoting rhizobacteria for increasing crop production and resilience. Journal of Plant Nutrition 46 (10): 2551–2580. DOI: 10.1080/01904167.2022.2160742.
33.
Indiragandhi P., Anandham R., Madhaiyan M., Poonguzhali S., Kim, G.H., Saravanan V.S., Sa T. 2007. Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutriti. Journal of Applied Microbiology 103 (6): 2664–2675. DOI:
https://doi.org/10.1111/j.1365....
34.
Indiragandhi P., Anandham R., Madhaiyan M., Sa T.M. 2008. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of Diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Current Microbiology 56 (4): 327–333. DOI:
https://doi.org/10.1007/s00284....
35.
Jaffar N.S., Jawan R., Chong K.P. 2023. The potential of lactic acid bacteria in mediating the control of plant diseases and plant growth stimulation in crop production – A mini review. Frontiers in Plant Science 13 (January): 1–13. DOI:
https://doi.org/10.3389/fpls.2....
36.
Jorquera M.A., Hernández M.T., Rengel Z., Marschner P., De La Luz Mora M. 2008. Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biology and Fertility of Soils 44 (8): 1025–1034. DOI:
https://doi.org/10.1007/s00374....
37.
Kabała C., Charzyński P., Chodorowski J., Drewnik M., Glina B. 2019. Systematyka gleb Polski. 6th ed. Wrocław University of Life Sciences, 56 pp. (in Polish).
38.
Karpagam T., Nagalakshmi P.K. 2014. Isolation and characterization of phosphate solubilizing microbes from agricultural soil. International Journal Of Current Microbiology and Aapplied Sciences 3 (3): 601–614.
39.
Khan A.A., Jilani G., Akhtar M.S., S. M. S. Naqvi, Rasheed M. 2009. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Journal of Agriculture and Biological Sciences 1 (1): 48–58.
40.
Khan M.S., Zaidi A., Musarrat J. (eds.) 2014. Phosphate solubilizing Microorganisms: Principles and Application of Microphos Technology. Springer International, Switzerland, 297 pp. DOI:
https://doi.org/10.1007/978-3-....
41.
Kikuchi Y., Sameshima S., Kitade O., Kojima J., Fukatsu T. 2002. Novel clade of Rickettsia spp. from leeches. Applied and Environmental Microbiology 68 (2): 999–1004. DOI:
https://doi.org/10.1128/AEM.68....
42.
Kim K., Indiragandhi P. 2008. In vitro evaluation of the mechanism of antagonism and phosphate solubilization by the insect gut bacteria Pseudomonas sp. PRGB06 that exhibits plant growth promotion and bio-fertilizing traits. Korean Journal of Soil Fertilizers 41 (1): 18–25.
43.
Kirui C.K., Njeru E.M., Runo S. 2022. Diversity and phosphate solubilization efficiency of phosphate solubilizing bacteria isolated from semi-arid agroecosystems of eastern Kenya. Microbiology Insights 15. Online DOI:
https://doi.org/10.1177/117863....
44.
Krawczyk K., Foryś J., Nakonieczny M., Tarnawska M., Bereś P.K. 2021. Transmission of Pantoea ananatis, the causal agent of leaf spot disease of maize (Zea mays), by western corn rootworm (Diabrotica virgifera virgifera LeConte). Crop Protection 141: 105431. DOI:
https://doi.org/https://doi.or....
45.
Krawczyk K., Szabelska-Beręsewicz A., Przemieniecki S.W., Szymańczyk M., Obrępalska-Stęplowska A. 2022. Insect gut bacteria promoting the growth of tomato plants (Solanum lycopersicum L.). International Journal of Molecular Sciences 23 (21): 13548. DOI:
https://doi.org/https://doi.or....
46.
Krawczyk K., Zwolińska A., Kamasa J., Maćkowiak-Sochacka A., Przemieniecki S. 2016. Identification and characterization of plant growth promoting endophytic bacteria. Progress in Plant Protection 55 (4): 100–109. DOI:
https://doi.org/10.14199/ppp-2....
48.
Li Q., Yang X., Li J., Li M., Li C., Yao T. 2023. In-depth characterization of phytase-producing plant growth promotion bacteria isolated in alpine grassland of Qinghai-Tibetan Plateau. Frontiers in Microbiology 13 (1): 1–18. DOI:
https://doi.org/10.3389/fmicb.....
49.
Lima P.J.M., Silva M.M., dos Santos Castro F.F., de Oliveira Batista P.S.G., 2022. Lactococcus garvieae, endocardite de prótese biológica aórtica: relato de caso e revisão de literatura. The Brazilian Journal of Infectious Diseases 26: 102193.
50.
Lin Y., Han J., Barkema H.W., Wang Y., Gao J., Kastelic J.P., Han B., Qin S., Deng Z. 2023. Comparative genomic analyses of Lactococcus garvieae isolated from bovine mastitis in China. Microbiology Spectrum 11 (3): 1–17. DOI:
https://doi.org/10.1128/spectr....
52.
Magnusson J., Ström K., Roos S., Sjögren J., Schnürer J. 2003. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiology Letters 219 (1): 129–135. DOI:
https://doi.org/10.1016/S0378-....
53.
Maheshwari D.K. 2013. Bacteria in Agrobiology – Plang Growrth Responses. Springer, 369 pp.
54.
Margalef O., Sardans J., Maspons J., Molowny-Horas R., Fernández-Martínez M., Janssens I.A., Richter A., Ciais P., Obersteiner M., Peñuelas J. 2021. The effect of global change on soil phosphatase activity. Global Change Biology 27 (22): 5989–6003. DOI:
https://doi.org/10.1111/gcb.15....
55.
Matsuura Y., Hosokawa T., Serracin M., Tulgetske G.M., Miller T.A., Fukatsu T. 2014. Bacterial symbionts of a devastating coffee plant pest, the stinkbug Antestiopsis thunbergii (Hemiptera: Pentatomidae). Applied and Environmental Microbiology 80 (12): 3769–3775. DOI:
https://doi.org/10.1128/AEM.00....
56.
Mei C., Chretien R.L., Amaradasa B.S., He Y., Turner A., Lowman S. 2021. Characterization of phosphate solubilizing bacterial endophytes and plant growth promotion in vitro and in greenhouse. Microorganisms 9 (9): 1935. DOI:
https://doi.org/10.3390/microo....
57.
Minuț M., Diaconu M., Roșca M., Cozma P., Bulgariu L., Gavrilescu M. 2023. Screening of Azotobacter, Bacillus and Pseudomonas species as plant growth-promoting bacteria. Processes 11 (1): 80. DOI:
https://doi.org/10.3390/pr1101....
58.
Munir I., Bano A., Faisal M. 2019. Impact of phosphate solubilizing bacteria on wheat (Triticum aestivum) in the presence of pesticides. Brazilian Journal of Biology 79 (1): 29–37. DOI:
https://doi.org/10.1590/1519-6....
59.
Oteino N., Lally R.D., Kiwanuka S., Lloyd A., Ryan D., Germaine K.J., Dowling D.N. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology 6 (7): 1–9. DOI:
https://doi.org/10.3389/fmicb.....
60.
Pandey A., Trivedi P., Kumar B., Palni L.M.S. 2006. Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian Central Himalaya. Current Microbiology 53 (2): 102–107. DOI:
https://doi.org/10.1007/s00284....
61.
Panetto L.D., Doria J., Santos C.H.B., Frezarin E.T., Sales L.R., de Andrade L.A., Rigobelo E.C. 2023. Lactic bacteria with plant-growth-promoting properties in potato. Microbiology Research 14 (1): 279–288. DOI:
https://doi.org/10.3390/microb....
62.
Ponmurugan P., Gopi C. 2006. In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria. African Journal of Biotechnology 5 (4): 348–350. DOI:
https://doi.org/10.4314/ajb.v5....
63.
Pourramezan Z., Ghezelbash G.R., Romani B., Ziaei S., Hedayatkhah A. 2012. Screening and identification of newly isolated cellulose-degrading bacteria from the gut of xylophagous termite Microcerotermes diversus (Silvestri). Microbiology (Russian Federation) 81 (6): 736–742. DOI:
https://doi.org/10.1134/S00262....
64.
Prischmann D.A., Lehman R.M., Christie A.A., Dashiell K.E. 2008. Characterization of bacteria isolated from maize roots: emphasis on serratia and infestation with corn rootworms (Chrysomelidae: Diabrotica). Applied Soil Ecology 40 (3): 417–431. DOI:
https://doi.org/10.1016/j.apso....
65.
Przemieniecki S.W., Gorczyca A., Matras E., Krawczyk K., Mastalerz J., Zakrzewski A. 2020. Bacteria isolated from the aeration chamber of wastewater treatment plants used in the biocontrol and promotion of wheat growth. Agronomy 10 (11): 1792. DOI:
https://doi.org/10.3390/agrono....
66.
Rajashekhar M., Kalia V.K. 2017. Biochemical and molecular characterization of Bacillus spp . isolated from insects. Journal of Entomology and Zoology Studies 5 (5): 581–588.
67.
Roberts T.L., Johnston A.E. 2015. Phosphorus use efficiency and management in agriculture. Resources, Conservation and Recycling 105: 275–281. DOI:
https://doi.org/10.1016/j.resc....
68.
Rodriguez H., Fraga R., Rodríguez H., Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Advances 17 (4–5): 319–339. DOI:
https://doi.org/10.1016/S0734-....
69.
Sanchez-Gonzalez M.E., Mora-Herrera M.E., Wong-Villarreal A., De La Portilla-López N., Sanchez-Paz L., Lugo J., Vaca-Paulín R., Del Aguila P., Yañez-Ocampo G. 2023. Effect of pH and carbon source on phosphate solubilization by bacterial strains in pikovskaya medium. Microorganisms 11 (1): 1–11. DOI:
https://doi.org/10.3390/microo....
70.
Santoyo G., Moreno-Hagelsieb G., del Carmen Orozco-Mosqueda M., Glick B.R. 2016. Plant growth-promoting bacterial endophytes. Microbiological Research 183: 92–99. DOI:
https://doi.org/10.1016/j.micr....
71.
Sarker A., Talukder N.M., Islam M.T. 2014. Phosphate solubilizing bacteria promote growth and enhance nutrient uptake by wheat. Plant Science Today 1 (2): 86–93. DOI:
https://doi.org/10.14719/pst.2....
73.
Schoebitz M., Ceballos C., Ciampi L. 2013. Effect of immobilized phosphate solubilizing bacteria on wheat growth and phosphate uptake. Journal of Soil Science and Plant Nutrition 13 (1): 1–10. DOI:
https://doi.org/10.4067/s0718-....
74.
Sharma S., Kumar V., Tripathi R.B. 2011. Isolation of phosphate solubilizing microorganism (PSMs) from soil. Journal of Microbiology and Biotechnology Research 1 (2): 90–95.
75.
Shen J., Yuan L., Zhang J., Li H., Bai Z., Chen X., Zhang W., Zhang F. 2011. Phosphorus dynamics: from soil to plant. Plant Physiology 156 (3): 997–1005. DOI:
https://doi.org/10.1104/pp.111....
76.
Silva L.I. da Pereira M.C., Carvalho A.M.X. de Buttrós V.H., Pasqual M., Dória J. 2023. Phosphorus-solubilizing microorganisms: a key to sustainable agriculture. Agriculture (Switzerland) 13 (2): 462. DOI:
https://doi.org/10.3390/agricu....
77.
Song C., Wang W., Gan Y., Wang L., Chang X., Wang Y., Yang W. 2022a. Growth promotion ability of phosphate-solubilizing bacteria from the soybean rhizosphere under maize–soybean intercropping systems. Journal of the Science of Food and Agriculture 102 (4): 1430–1442. DOI:
https://doi.org/10.1002/jsfa.1....
78.
Song Q., Deng X., Song R., Song X. 2022b. Plant growth-promoting rhizobacteria promote growth of seedlings, regulate soil microbial community, and alleviate damping-off disease caused by Rhizoctonia solani on Pinus sylvestris var. mongolica. Plant Disease 106 (10): 2730–2740. DOI:
https://doi.org/10.1094/PDIS-1....
79.
de Souza R., Ambrosini A., Passaglia L.M.P. 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology 38 (4): 401–419. DOI:
https://doi.org/10.1590/S1415-....
80.
Suleman M., Yasmin S., Rasul M., Yahya M., Atta B.M., Mirza M.S. 2018. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PLoS ONE 13 (9): 1–28. DOI:
https://doi.org/10.1371/journa....
81.
Tabatabai M.A., Bremner J.M. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry 1 (4): 301–307. DOI:
https://doi.org/10.1016/0038-0....
82.
Tang A., Haruna A.O., Majid N.M.A. 2018. Potential PGPR properties of cellulolytic, nitrogen-fixing, and phosphate-solubilizing bacteria of a rehabilitated tropical forest soil. bioRxiv: 1–22. DOI:
https://doi.org/10.1101/351916.
83.
Tarafdar J.C., Jungk A. 1987. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biology and Fertility of Soils 3 (4): 199–204. DOI:
https://doi.org/10.1007/BF0064....
84.
Tarafdar J.C., Yadav R.S., Meena S.C. 2001. Comparative efficiency of acid phosphatase originated from plant and fungal sources. Journal of Plant Nutrition and Soil Science 164 (3): 279–282. DOI:
https://doi.org/10.1002/1522-2...<279::AID-JPLN279>3.0.CO;2-L.
85.
Teng Z., Shao W., Zhang K., Huo Y., Li M. 2019. Characterization of phosphate solubilizing bacteria isolated from heavy metal contaminated soils and their potential for lead immobilization. Journal of Environmental Management (231): 189–197. DOI:
https://doi.org/10.1016/j.jenv....
86.
Vazquez P., Holguin G., Puente M.E., Lopez-Cortes A., Bashan Y. 2000. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils 30 (5–6): 460–468. DOI:
https://doi.org/10.1007/s00374....
87.
Vives-Peris V., de Ollas C., Gómez-Cadenas A., Pérez-Clemente R.M. 2020. Root exudates: from plant to rhizosphere and beyond. Plant Cell Reports 39 (1): 3–17. DOI:
https://doi.org/10.1007/s00299....
88.
Wang C., Pan G., Lu X., Qi W. 2023. Phosphorus solubilizing microorganisms: potential promoters of agricultural and environmental engineering. Frontiers in Bioengineering and Biotechnology 11 (May): 1–5. DOI:
https://doi.org/10.3389/fbioe.....
89.
Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73 (16): 5261–5267. DOI:
https://doi.org/10.1128/AEM.00....
90.
Wen T., Zhao M., Yuan J., Kowalchuk G.A., Shen Q. 2021. Root exudates mediate plant defense against foliar pathogens by recruiting beneficial microbes. Soil Ecology Letters 3 (1): 42–51. DOI:
https://doi.org/10.1007/s42832....
91.
Wielkopolan B., Krawczyk K., Szabelska-Beręsewicz A., Obrępalska-Stęplowska A. 2021. The structure of the cereal leaf beetle (Oulema melanopus) microbiome depends on the insect’s developmental stage, host plant, and origin. Scientific Reports 11 (1): 1–19. DOI:
https://doi.org/10.1038/s41598....
92.
Williams A., de Vries F.T. 2020. Plant root exudation under drought: implications for ecosystem functioning. New Phytologist 225 (5): 1899–1905. DOI:
https://doi.org/10.1111/nph.16....
93.
Yadav R.S., Kumar M., Santra P., Meena H.M., Meena H.N. 2023. Plant growth-promoting microbes: The potential phosphorus solubilizers in soils of arid agro-ecosystem. p. 71–92. In: “Plant Growth Promoting Microorganisms of Arid Region” Springer.
94.
You M., Fang S., MacDonald J., Xu J., Yuan Z.C. 2020. Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth. Microbiological Research 233 (November 2019): 126395. DOI:
https://doi.org/10.1016/j.micr....
95.
Yousefi A.A., Khavazi K., Moezi A.A., Rejali F., Nadian H.A. 2011. Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Applied Sciences Journal 15 (9): 1310–1318.
96.
Zaidi A., Khan M.S., Ahemad M., Oves M. 2009. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica 56 (3): 263–284. DOI:
https://doi.org/10.1556/AMicr.....
97.
Zhang N., Wang D., Liu Y., Li S., Shen Q., Zhang R. 2014. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant and Soil 374 (1–2): 689–700. DOI:
https://doi.org/10.1007/s11104....