ORIGINAL ARTICLE
Plant growth promoting rhizobacteria and Rhizophagus irregularis: biocontrol of rice blast in wild type and mycorrhiza-defective mutant
More details
Hide details
1
Plant Disease Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Teheran, Iran
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2018-11-18
Acceptance date: 2019-08-29
Online publication date: 2019-10-11
Corresponding author
Samira Peighami Ashnaei
Plant Disease Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Teheran, Iran
Journal of Plant Protection Research 2019;59(3):362-375
KEYWORDS
TOPICS
ABSTRACT
Rice blast is one of the most destructive rice diseases known to cause considerable yield
losses globally. Plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal
fungi (AMF) are closely associated with rice plants and improve plant growth and health.
To determine how isolated bacteria trigger rice growth, an assessment of phosphate solubilization
and auxin production mechanisms was carried out in vitro and in vivo. In this
study, the interactions between PGPR and Rhizophagus irregularis were evaluated in wildtype
and CYCLOPS mutant plants to provide a sustainable solution against blast disease and
reduce the amount of yield loss. Importantly, Bacillus subtilis UTSP40 and Pseudomonas
fluorescens UTSP50 exhibited a suppressive effect on AMF colonization which shows the
probable existence of a functional competition between AMF and PGPR to dominate the
rhizosphere. On the other hand, R. irregularis decreased the biocontrol activity of B. subtilis
UTSP40 in wild type, although this reduction was not significant in mutant plants. Results
showed that the same defense-related genes were induced in the roots of wild type colonized
by B. subtilis UTSP40 and R. irregularis. Therefore, plant cell programs may be shared
during root colonization by these two groups of beneficial microorganisms.
ACKNOWLEDGEMENTS
The author has the Ministry of Science, Research and
Technology of Iran, University of Lausanne (UNIL,
Switzerland) and Dr. Uta Paszkowski to thank for providing
the necessary funds and facilities to carry out
the experiments.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (74)
1.
Abe H., Ohnishi J., Narusaka M., Seo S., Narusaka Y., Tsuda S., Kobayashi M. 2008. Function of jasmonate in response and tolerance of Arabidopsis to trip feeding. Plant and Cell Physiology 49 (1): 68–80. DOI:
https://doi.org/10.1093/pcp/pc....
2.
Amruta N., Prasanna Kumar M.K.P., Puneeth M.E., Sarika G., Kandikattu H.K., Vishwanath K., Narayanaswamy S. 2018. Exploring the potentiality of novel rhizospheric bacterial strains against the rice blast fungus Magnaporthe oryzae. Plant Pathology 34 (2): 126–138. DOI: 10.5423/PPJ.OA.11.2017.0242.
3.
Artursson V., Finlay R.D., Jansson J. 2005. Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environmental Microbiology 7 (12): 1952–1966. DOI:
https://doi.org/10.1111/j.1462....
4.
Augé R.M., Toler H.D., Saxton A.M. 2015. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25 (1): 13–24. DOI:
https://doi.org/10.1007/s00572....
5.
Bai F., De Mason D.A. 2008. Hormone interactions and regulation of PSPK2::GUS compared with DR5::GUS and PID::GUS in Arabidopsis thaliana. American Journal of Botany 95: 133–145.
6.
Barahona E., Navazo A., Yousef-Coronado F., de Cárcer D.A., Martinez-Granero F., Espinosa-Urgel M., Martin M., Rivilla R. 2010. Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces. Environmental Microbiology 12 (12): 3185–3195. DOI:
https://doi.org/10.1111/j.1462....
7.
Becard G., Fortin J.A. 1988. Early events of vesicular-arbuscular mycorrhiza formation in Ri T-DNA transformed roots. New Phytologist 108 (2): 211–218. DOI:
https://doi.org/10.1111/j.1469....
8.
Bharadwaj D.P., Alström S. 2012. Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria and plant pathogens under in vitro conditions. Mycorrhiza 22 (6): 437–447. DOI:
https://doi.org/10.1007/s00572....
9.
Bona E., Scarafoni A., Marsano F., Boatti L., Copetta A., Massa N., Gamalero E., D’Agostino G., Cesaro P., Cavaletto M., Berta G. 2016. Arbuscular mycorrhizal symbiosis affects the grain proteome of Zea mays: a field study. Scientific Reports 6 (1): 294–339. DOI:
https://doi.org/10.1038/srep26....
10.
Braga R.M., Dourado M.N., Araujo W.L. 2016. Microbial interactions: ecology in a molecular perspective. Brazilian Journal of Microbiology 47S: 86–98.
11.
Bric J.M., Bostock R.M., Silverstone S.E. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology 57: 535–538.
12.
Brundrett M.C., Piche Y., Peterson R.L. 1984. A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Canadian Journal of Botany 62 (10): 2128–2134. DOI:
https://doi.org/10.1139/b84-29....
13.
Button D.K., Schut F., Quang P., Martin R., Robertson B.R. 1993. Viability and isolation of typical marine oligotrophic bacteria by dilution culture: theory, procedures and initial results. Applied and Environmental Microbiology 59: 881–891.
14.
Campos-Soriano L., García-Martínez J., Segundo B.S. 2012. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defense-related genes in rice leaves and confers resistance to pathogen infection. Molecular Plant Pathology 13 (6): 579–592. DOI:
https://doi.org/10.1111/j.1364....
15.
Cook R.J., Bruckart W.L., Coulson J.R., Goettel M.S., Humber R.A., Lumsden R.D., Maddox J.V., McManus M.L., Moore L., Meyer S.F., Quimby P.C., Jr. Stack J.P., Vaughn J.L. 1996. Safety of microorganisms intended for pest and plant disease control: a framework for scientific evaluation. Biological Control 7 (3): 333–351. DOI:
https://doi.org/10.1006/bcon.1....
17.
Deng S., Gu Z., Yang N., Li L., Yue X., Que Y., Sun G., Wang Z., Wang J. 2016. Identification and characterization of the proxin 1 gene MOPEX1 required for infection-related morphogenesis and pathogenicity in Magnaporthe oryzae. Scientific Reports 6 (1): 362–392. DOI:
https://doi.org/10.1038/srep36....
18.
Doornbos R.F., Geraats B.P.J., Kuramae E.E., van Loon L.C., Bakker P.A.H.M. 2011. Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana. Molecular Plant-Microbe Interactions 24 (4): 395–407. DOI:
https://doi.org/10.1094/mpmi-0....
19.
FAO. 2009. FAO’s director-general on how to feed the world in 2050. Insights from an Expert Meeting at FAO. 1: 1–35.
20.
Fattahi E., Mousavi Moghadam M., Khanbabaei R. 2015. The effect of fricyclazole on testosterone changes and testicular structure in mice. Journal of Babol University Medical Sciences 17: 43–49.
21.
Filippi M.C.C., da Silva G.B., Silva-Lobo V.L., Cortes M.V.C.B., Moraes A.J.G., Prabhu A.S. 2011. Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control 58 (2): 160–166. DOI:
https://doi.org/10.1016/j.bioc....
22.
Gao L.L., Knogge W., Delp G., Smith F.A, Smith S.E. 2004. Expression patterns of defense-related genes in different types of arbuscular mycorrhizal development in wild type and mycorrhiza-defective mutant tomato. MPMI 17 (10): 1103–1113. DOI:
https://doi.org/10.1094/mpmi.2....
23.
Gnanamanickam S.S., Mew T.W. 1992. Biological control of blast disease of rice (Oryza sativa L.) with antagonistic bacteria and its mediation by a Pseudomonas antibiotic. Annals of the Phytopathological Society of Japan 58 (3): 380–385. DOI:
https://doi.org/10.3186/jjphyt....
24.
Güimil S., Chang U.S., Zhu T., Sesma A., Osbourn A., Roux C., Ioannidis V., Oakeley E.J., Docqier M., Descombes P., Briggs S.P., Paskowski U. 2005. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. PANS 102 (22): 8066–8070. DOI:
https://doi.org/10.1073/pnas.0....
25.
Gutjahr C., Banba M., Croset V., An K., Miyao A., Hirochika H., Imaizumi-Anraku H., Paskowski U. 2008. Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell 20 (11): 2989–3005. DOI:
https://doi.org/10.1105/tpc.10....
26.
Gutjahr C., Siegler H., HAga K., Lino M., Paszkowski U. 2015. Full establishment of arbuscular mycorrhizal symbiosis in rice occurs independently of enzymatic josmonate biosynthesis. PLOS ONE 10 (4): e0123422. DOI:
https://doi.org/10.1371/journa....
27.
Hashem A., Abd-Allah E.F., Alqarawi A.A., Al-Huqail A.A., Wirth S., Egamberdieva D. 2016. The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in Microbiology 7: 1089. DOI:
https://doi.org/10.3389/fmicb.....
28.
Iqbal A., Hasnain S. 2013. Auxin producing Pseudomonas strains: biological candidates to modulate the growth of Triticum aestivum beneficially. American Journal of Plant Sciences 4 (9): 1693–1700. DOI:
https://doi.org/10.4236/ajps.2....
29.
Jacott C.N., Murray J.D., Ridout C.G. 2017. Trade-offs in arbuscular mycorrhizal symbiosis: disease resistance, growth responses and perspectives for crop breeding. Agronomy Journal 7 (4): 75. DOI:
https://doi.org/10.3390/agrono....
30.
Jefferson R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reporter 5 (4): 387–405. DOI:
https://doi.org/10.1007/bf0266....
31.
Jha B.K., Pragash M.G., Cletus G., Raman G., Sakthivel N. 2009. Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World Journal of Microbiology and Biotechnology 25 (4): 573–581. DOI:
https://doi.org/10.1007/s11274....
32.
Jung S.C., Martinez-Medina A., Lopez-Raez J.A., Pozo M.J. 2012. Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology 38 (6): 651–664. DOI:
https://doi.org/10.1007/s10886....
33.
Kape R., Wex K., Parinske M., George E., Wetzel A., Werner D. 1992. Legume root metabolites and VA-mycorrhiza development. Journal of Plant Physiology 141 (1): 54–60. DOI:
https://doi.org/10.1016/s0176-....
34.
Katznelson H., Bose B. 1959. Metabolic activity and phosphatedissolving capability of bacterial isolates from wheat roots, rhizosphere, and non-rhizosphere soil. Canadian Journal of Microbiology 5 (1): 79–85. DOI:
https://doi.org/10.1139/m59-01....
35.
Khan M.R., Haque Z. 2011. Soil application of Pseudomonas fluorescens and Trichoderma harzianum reduces root-knot nematode, Meloidogyne incognita, on tobacco. Phytopathologia Mediterranea 50: 257–266.
36.
Khaosaad T., Garcia-Garrido J.M., Steinkellner S., Vierheilig H. 2007. Take-all disease is systemically reduced in roots of mycorrhizal barely plants. Soil Biology Biochemistry 39 (3): 727–734. DOI:
https://doi.org/10.1016/j.soil....
37.
Khush G.S., Jena K.K. 2009. Current Status and Future Prospects for Research on Blast Resistance in Rice (Oryza sativa L.). 1–10. In: “Advances in Genetics, Genomics and Control of Rice Blast Disease” (Wang G.-.L, Valent B., eds.). Springer Netherlands.
38.
Kihara T., Zhao C-R., Kobayashi Y., Takita E., Kwazu T., Koyama H. 2006. Simple identification of transgenic Arabidopsis plant carrying a single copy of the integrated gene. Bioscience, Biotechnology, and Biochemistry 70 (7): 1780–1783. DOI:
https://doi.org/10.1271/bbb.50....
39.
King J.E. 1936. The colorimetric determination of phosphorus. Biochemical Journal 26: 292–297.
40.
Lane D.J. 1991. 16S/23S rRNA sequencing. p. 115–147. In: “Nucleic Acid Techniques in Bacterial Systematics” (Stackebrandt E., Goodfellow M., eds). John Wiley & Sons: New York, NY, USA.
41.
Larimer A.L., Clay K., Bever J.D. 2014. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology 95 (4): 1045–1054. DOI:
https://doi.org/10.1890/13-002....
42.
Law J.W.F., Ser H.L., Khan T.M., Chuah L.H., Pusparajah P., Chan K.G., Goh B.H., Lee L.H. 2017. The potential of Sterptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Frontiers in Microbiology 8: 3. DOI:
https://doi.org/10.3389/fmicb.....
43.
Li Q., Jiang Y., Ning P., Zheng L., Huang J., Li G., Jiang D., Hsiang T. 2011. Suppression of Magnaporthe oryzae by culture filtrates of Streptomyces globisporus JK-1. Biological Control 58 (2): 139–148. DOI:
https://doi.org/10.1016/j.bioc....
44.
Marcel S., Sawers R., Oakeley E., Angliker H., Paszkowskia U. 2010. Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. Plant Cell 22 (9): 3177–3187. DOI:
https://doi.org/10.1105/tpc.11....
45.
Marra L.M., de Oliveira-Longatti S.M., Soares C.R.F.S., de Lima J.M., Olivares F.L., Moreira F.M.S. 2015. Initial pH of medium affects organic acids production but not affect phosphate solubilization. Brazilian Journal of Microbiology 46 (2): 367–375. DOI:
https://doi.org/10.1590/s1517-....
46.
Marra L.M., Soares C.R.F.S., Oliveira S.M., Ferreira P.A.A., Soares B.L., Carvalho R.F., Lima J.M., Morcira F.M.S. 2012. Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant and Soil 357 (1–2): 289–307. DOI:
https://doi.org/10.1007/s11104....
47.
Martinez-Medina A., Roldan A., Albacete A., Pascual J.A. 2011. The interaction with arbuscular mycorrhizal fungi or Trichoderma harzianum alters the shoot hormonal profile in melon plants. Phytochemistry 72 (2–3): 223–229. DOI:
https://doi.org/10.1016/j.phyt....
48.
Micallef S.A., Shiaris M.P., Colon-Carmona A. 2009. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. Journal of Experimental Botany 60 (6): 1729–1742. DOI:
https://doi.org/10.1093/jxb/er....
49.
Nakgawa T., Imaizumi-Anraku H. 2015. Rice arbuscular mycorrhiza as a tool to study the molecular mechanisms of fungal symbiosis and a potential target to increase productivity. Rice 8 (1): 32. DOI:
https://doi.org/10.1186/s12284....
50.
Nouri E., Breuillin-Sessoms F., Feller U., Reinhardt D. 2015. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in petunia hybrida. PLoS One 10 (4): e0127472. DOI:
https://doi.org/10.1371/journa....
51.
Oldenburg K.R., Vo K.T., Ruhland B., Schatz P.J., Yuan Z. 1996. A dual culture assay for detection of antimicrobial activity. Journal of Biomolecular Screening 1 (3): 123–130. DOI:
https://doi.org/10.1177/108705....
52.
Ordonez T.M., Fernandez B.R., Lara L.S., Rodriguez A., Uribe-Velez D., Sanders I.R. 2016. Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS One 11 (6): e0154438. DOI:
https://doi.org/10.1371/journa....
53.
Oteino N., Lally R.D., Kiwanuka S., Lloyd A., Ryan D., Germaine K.J., Dowling D.W. 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology 6: 745. DOI:
https://doi.org/10.3389/fmicb.....
54.
Park J.Y., Jin J., Lee Y.W., Kang S., Lee Y.H. 2009. Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a mechanism distinct from that required for the infection of rice. Plant Physiology 149 (1): 474–486. DOI:
https://doi.org/10.1104/pp.108....
55.
Paszkowski U., Kroken S., Roux C., Briggs S.P. 2002. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. PNAS 99: 13324–13329. DOI:
https://doi.org/10.1073/pnas.2....
56.
Pieterse C.M.J., Zamioudis C., Berendsen R.L., Weller D.M., Van Wees S.C., Bakker P.A. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology 52: 347–375.
57.
Pozo M.J., Azcón-Aguilar C. 2007. Unraveling mycorrhiza-induced resistance. Current Opinion in Plant Biology 10 (4): 393–398. DOI:
https://doi.org/10.1016/j.pbi.....
58.
Reetha S., Bhuvaneswari G., Thamizhiniyan P., Mycin T.R. 2014. Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillu subtilis and enhance growth of onion (Allim cepa. L). International Journal of Current Microbiology and Applied Sciences 3: 568–574.
59.
Ryu C.M., Farag M.A., Hu C.H., Reddy M.S., Kloepper J.W., Pare P.W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology 134 (3): 1017–1026. DOI:
https://doi.org/10.1104/pp.103....
60.
Saito K., Yoshikawa M., Yano K., Miwa H., Uchida H., Azamizu E. 2007. Nucleoprin 85 is required for calcium spiking, fungal and bacterial symbiosis and seed production in Lotus japonicus. Plant Cell 19 (2): 610–624. DOI:
https://doi.org/10.1105/tpc.10....
61.
Sha Y., Wang Q., Li Y. 2016. Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast. Springer Plus 5 (1): 1238. DOI:
https://doi.org/10.1186/s40064....
62.
Smith S.E., Read D.J. 2008. Mycorrhizal Symbiosis. 3rd Edn. London: Academic.
63.
Song Y., Chen D., Lu K., Sun Z., Zeng R. 2015. Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Frontiers in Plant Science 6: 786. DOI:
https://doi.org/10.3389/fpls.2....
64.
Spence C., Alff E., Johnson C., Ramos C., Donofrio N., Sundaresan V., Bais H. 2014. Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biology 14 (1): 130. DOI:
https://doi.org/10.1186/1471-2....
65.
Sreevidya V.S., Hernandez-Oanea R.J., Gyaneshwarb P., Lara-Floresc M., Ladhaa J.K., Reddyc P.M. 2010. Changes in auxin distribution patterns during lateral root development in rice. Plant Science 178 (6): 531–538. DOI:
https://doi.org/10.1016/j.plan....
66.
Suslow T.V., Schroth M.N. 1981. Bacterial culture preservation in frozen and dry-film methylcellulose. Applied and Environmental Microbiology 42: 872–877.
67.
TeBeest D.O., Guerber C., Ditmore M. 2007. Rice Blast. Plant Health Instructor, 10, pp.
68.
Widiantini F., Herdiansyah A., Yulida E. 2017. Biocontrol of Endophytic bacteria isolated from healthy rice plant against rice blast disease (Pyricularia oryzae Cav.). p. 287–295. In: Proceedings of the 2nd International Conference on Sustainable Agriculture and Food Security, Jatinangor, Sumedang, West Java, Indonesia.
69.
Xie X.Z., Xue Y.J., Zhou J.J., Zhang B., Changc H., Takano M. 2011. Phytochromes regulate SA and JA signaling pathways in rice and are required for developmentally controlled resistance to Magnaporthe grisea. Molecular Plant 4 (4): 688–696. DOI:
https://doi.org/10.1093/mp/ssr....
70.
Yang S.Y., Grønlund M., Jakobsen I., Grotemeyer M.S., Rentsch D., Miyano A., Hirochika H., Kumar C.S., Sundarsan V., Salamin N., Catausan S., Mattes N., Heuer S., Paszkowski U. 2012. Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family. Plant Cell 24 (10): 755–769. DOI:
https://doi.org/10.1105/tpc.11....
71.
Yano K., Yoshida S., Muller J., Singh S., Banba M., Vickers K. 2008. CYCLOPS, a mediator of symbiotic intracellular accommodation. Proceedings of the National Academy of Sciences 105 (51): 20540–20545. DOI:
https://doi.org/10.1073/pnas.0....
72.
Yoon M.Y., Cha B., Kim J.C. 2013. Recent trends in studies on botanical fungicides in agriculture. Journal of Plant Pathology 29 (1): 1–9. DOI:
https://doi.org/10.5423/ppj.rw....
73.
Zhang H., Kim M.S., Krishnamachari V., Payton P., Sun Y., Grimson M., Farag M.A., Ryu C.M., Allen R., Melo I.S. 2007. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226 (4): 839–851. DOI:
https://doi.org/10.1007/s00425....
74.
Zhang J., Du X., Wang Q., Chen X., Lv D., Xu K., Qu S., Zhang Z. 2010. Expression of pathogenesis related genes in response to salicylic acid, methyl jasmonate and 1-aminocycloproponse-1-carboxylic acid in Malus hupehensis (Pamp.) Rehd. BMC Research Notes 3 (1): 208. DOI:
https://doi.org/10.1186/1756-0....