ORIGINAL ARTICLE
Phytochemical potential of Ficus species for the control of the phytonematode Meloidogyne javanica
More details
Hide details
1
Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
2
Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
3
Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
4
Núcleo de Análise de Biomoléculas (NuBioMol), Centro de Ciências Biológicas, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2019-12-02
Acceptance date: 2020-02-20
Online publication date: 2020-06-18
Journal of Plant Protection Research 2020;60(2):193-206
KEYWORDS
TOPICS
ABSTRACT
Root-knot nematodes, genus Meloidogyne, are among the most plant damaging pathogens
worldwide. The action of natural products against plant pathogens has been investigated
to assess their effectiveness in the control of diseases. Thus, the present study aimed to
evaluate the phytochemistry potential of the Ficus species for the control of Meloidogyne
javanica. In vitro inhibitory activity assays were performed with crude ethanolic extracts
of leaves and branches from 10 Ficus species. Among these, Ficus carica extracts exhibited
strong paralysis activity against second stage juveniles (J2) (EC50 = 134.90 μg ∙ ml–1), after
72 hours. In addition, high efficacy was observed in egg-hatching inhibition at different
embryonic stages. Microscopy analysis revealed severe morphological alterations in the
nematode tissues at the J2 stage, as well as immotility of juveniles released from eggs in the
presence of F. carica extracts. The efficacy of the treatments for the other species was very
low. These differences were supported by the variation in the compound classes, mainly for
alkaloids and metabolite profiles by Gas Chromatography/Mass Spectrometry (GC/MS)
when F. carica was compared with the other species. The results indicated that F. carica is
a promising source for the isolation and identification of molecules capable of acting in the
control of M. javanica.
ACKNOWLEDGEMENTS
We are very gratefully to the Nívea Moreira Vieira, Cássia
Gondim Pereira, Geovani do Carmo Copati da Silva,
Júlio César Nunes and Antonio Xavier Avelar for technical
support. We are thankful to the professor Juliana
Lopes Rangel Fietto from Department of Biochemistry
and Molecular Biology of Federal University of Viçosa
(UFV) for contribution to the microscopy analysis.
FUNDING
This study was supported by the National Institute
of Science and Technology in Plant-Pest Interaction
(INCT-IPP), Núcleo de Análises de Biomoléculas (Nu-
BioMol, UFV), Brazilian Soybean Genome Consortium
(GENOSOJA), Fundação de Amparo à Pesquisa
de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior (CAPES)
– Finance Code 001, and Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq).
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (30)
1.
Ahmad F., Siddiqui M.A. 2009. Management of root knot nematode Meloidogyne incognita in tomato. Pakistan Journal of Nematology 27 (2): 369–373.
2.
Amorin A., Borba H.R., Carauta J.P., Lopes D., Kaplan M.A. 1999. Anthelmintic activity of the latex of Ficus species. Journal Ethnopharmacology 64: 255–258.
3.
Bellafiore S., Shen Z., Rosso M.N., Abad P., Shih P., Briggs S.P. 2008. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS Pathogenes 4: e1000192. DOI:
https://doi.org/10.1371/journa....
4.
Berg C.C., Carauta J.P.P. 2002. New species of Ficus (Moraceae) from Brazil. Brittonia 2002 (54): 236–250.
5.
Caboni P., Aissani N., Cabras T., Falqui A., Marrota R., Liori B., Ntalli N., Sarais G., Sasanelli N., Tocco G. 2013. Potent nematicidal activity of phthalaldehyde, salicyaldehyde, and cinamic aldehyde against Meloidogyne incognita. Journal Agricultural Food Chemistry 61: 1794–1803. DOI:
https://doi.org/10.1021/jf3051....
6.
Caboni P., Saba M., Oplos C., Aissani N., Maxia A., Menkissoglu-Spiroudi U., Casu L., Ntalli N. 2015. Nematicidal activity of furanocoumarins from parsley against Meloidogyne spp. Pest Management Science 71 (8): 1099–1105. DOI:
https://doi.org/10.1002/ps.389....
7.
Cantrell C.L., Dayan F.E., Duke S.O. 2012. Natural products as sources for new pesticides. Journal of Natural Products 22 (75): 1231–1242. DOI:
https://doi.org/10.1021/np3000....
8.
Cox D.G., Joonseok O., Adam K., Colson K., Hamann M.T. 2014. The utility of metabolomics in natural product and biomarker characterization. Biochimica et Biophysica Acta 1840 (12): 3460–3474. DOI:
https://doi.org/10.1016/j.bbag....
9.
Curtis R.H. 2008. Plant-nematode interations: enviromental signals detected by the nematode’s chemosensory organs control changes in the surface cuticle and behaviour. Parasite 15: 310–316. DOI:
https://doi.org/10.1051/parasi....
10.
Finney D.J. 1971. Probit Analysis. 3rd ed., Cambridge, Cambridge University Press, UK, 333 pp.
11.
Fleming R.T., Maule A.G., Fleming C.C. 2017. Chemosensory responses of plant parasitic nematodes to selected phytochemicals reveal long-term habituation traits. Journal of Nematology 49: 462–471.
12.
Gouveia A.S., Soares F.E.F., Morgan T., Sufiate B.L., Tavares G.P., Braga F.R., Monteiro T.S.A., Geniêr H.L.A., Freitas L.G., Queiroz J.H. 2017. Enhanced production of Monacrosporium thaumasium protease and destruction action on rootknot nematode Meloidogyne javanica eggs. Rhizosphere 3: 13–15. DOI:
https://doi.org/10.1016/j.rhis....
13.
Jenkins W.R. 1964. A rapid centrifugal-flotation techinique for separating nematodes from soil. Plant Disease Reporter 48: 692. DOI:
https://doi.org/10.1007/s10333.
14.
Jones J.T., Haegeman A., Danchin E.G.J., Gaur H.S., Helder J., Jones M.G.K. 2013. Top 10 plant parasite nematodes in molecular plant phatology. Molecular Plant Pathology 14: 946–961. DOI:
https://doi.org/10.1111/mpp.12....
15.
Lahm G.P., Desaeger J., Smith B.K., Pahutski T.F., Rivera M.A., Meloro T., Kucharczyk R., Lett R.M., Daly A., Smith B.T., Cordova D., Thoden T., Wiles J.A. 2017. The discovery of fluazaindolizine: A new product for the control of plant parasitic nematodes. Bioorganic & Medicinal Chemistry Letters 27 (7): 1572–1575. DOI: 10.1016/j.bmcl.2017.02.029.
16.
Lee Y.S., Anees M., Hyun H.N., Kim K.Y. 2013. Biocontrol potential of Lysobacter antibioticus HS124 against the rootknot nematode, Meloidogyne incognita, causing disease in tomato. Nematology 15: 545–555. DOI:
https://doi.org/10.1163/156854....
17.
Lima L.L., Balbi B.P., Mesquita R.O., Silva J.C.F., Coutinho F.S., Carmo F.M.S., Vital C.E., Metha A., Loureiro M.E., Fontes E.P.B., Barros E.G., Ramos H.J.O. 2019. Proteomic and metabolomic analysis of a drought tolerant soybean cultivar from Brazilian savanna. Crop Breeding, Genetics and Genomics 2019 (1): e190022. DOI:
https://doi.org/10.20900/cbgg2....
18.
Liu F., Zhongshan Y., Xi Z., Shaoliu L., Keqin Z., Guohong Li. 2011. Nematicidal coumarin from Ficus carica L. Journal of Asia-Pacific Entomology 14 (1): 79–81. DOI:
https://doi.org/10.1016/j.aspe....
19.
Lu H., Xu, S., Zhang W., Xu C., Li B., Zhang D., Mu M., Liu F. 2017. Nematicidal activity of trans-2-hexenal against southern root-knot nematode (Meloidogyne incognita) on tomato plants. Journal of Agricultural and Food Chemistry 65 (3): 544–550. DOI: 10.1021/acs.jafc.6b04091.
20.
Mawa S., Husain K., Jantan I. 2013. Ficus carica L. (Moraceae): phytochemistry, traditional uses and biological activities. Evidence-Based Complementary and Alternative Medicine 2013: 1–8. DOI:
https://doi.org/http://dx.doi.....
21.
Nicolopoulou-Stamati P., Maipas S., Kotampasi C., Stamatis P., Hens L. 2016. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Frontiers Public Health 2016 (4): 148. DOI: 10.3389/fpubh.2016.00148.
23.
Ntalli N.G., Oplos C., Michailidis M., Thanasenaris A., Kontea D., Caboni P., Tsiropoulos N.G., Menkissoglu-Spiroudi U., Adamski Z. 2016. Strong synergistic activity and egg hatch inhibition by (E,E)-2,4-decadienal and (E)-2-decenal in Meloidogyne species. Journal of Pest Science 89 (2): 565–579. DOI:
https://doi.org/10.1007/s10340....
24.
Pignati W.A., Lima F.A.N.S., Lara S.S., Correa M.L.M., Barbosa J.R., Leão L.H.D.C., Pignatti M.G. 2017. Spatial distribution of pesticide use in Brazil: a strategy for Health Surveillance. Ciência and Saúde Coletiva 207 (10): 3281–3293. DOI:
https://doi.org/10.1590/1413-8....
25.
Puntener W. 1981. Manual for Field Trials in Plant Protection. 2nd ed. Ciba-Geigy: Basel, Switzerland, 205 pp.
26.
Ronsted N., Weiblen G.D., Clement W.L., Zerega N.J.C., Savolainen V. 2008. Reconstructing the phylogeny of figs (Ficus, Moraceae) to reveal the history of the fig pollination mutualism. Symbiosis 45: 45–55.
27.
Seo Y., Kim Y.H. 2014. Control of Meloidogyne incognita using mixtures of organic acids. Plant Pathology Journal 30 (4): 450–455. DOI:
https://doi.org/10.5423/PPJ.NT....
28.
Sufiate B.L., Soares F.E.F., Roberti A.S., Queiroz J.H. 2017. Nematicidal activity of proteases from Eufhorbia milli. Biocatalysis and Agricultural Biotechnology 10: 239–241. DOI: 10.1016/j.bcab.2017.03.014.
29.
Xiang N., Lawrence K.S. 2016. Optimization of in vitro techniques for distinguishing between live and dead second stage juveniles of Heterodera glycines and Meloidogyne incognita. PloS ONE 11 (5): e0154818. DOI:
https://doi.org/10.1371/.
30.
Yang X., Wang X., Wang K., Su L., Li H., Li R., Shen Q. 2015. The nematicidal effect of Camellia seed cake on root-knot nematode Meloidogyne javanica of banana. PloS ONE: 10 (4): e01119700. DOI:
https://doi.org/10.1371/journa....