ORIGINAL ARTICLE
Molecular identification, occurrence and distribution of Thrips palmi, Frankliniella intonsa and Frankliniella cephalica (Thysanoptera: Thripidae) on cucurbit crops in Panama
More details
Hide details
1
Grupo de Investigación de Protección Vegetal (GIPV), Centro de Investigación Agropecuaria Divisa (CIAD), Instituto de Investigación Agropecuaria de Panamá (IDIAP), Ctra. Panamericana, Los Canelos, Santa María, Estafeta de Divisa, 0619 Herrera, Panama
2
Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113 Moncada, Valencia, Spain
3
Departamento de Biotecnología, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural (ETSIAMN), Universitat Politècnica de València (UPV), Camino de Vera, s/n, 46022 Valencia, Spain
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2019-08-26
Acceptance date: 2019-11-18
Online publication date: 2020-03-24
Corresponding author
Jose Angel Herrera Vasquez
Grupo de Investigación de Protección Vegetal (GIPV), Centro de Investigación Agropecuaria Divisa (CIAD), Instituto de Investigación Agropecuaria de Panamá (IDIAP), Ctra. Panamericana, Los Canelos, Santa María, Estafeta de Divisa, 0619 Herrera, Panama
Journal of Plant Protection Research 2020;60(1):68-76
KEYWORDS
TOPICS
ABSTRACT
The main open-field producer regions of cucurbits (watermelon, squash, melon and cucumber)
in Panama (Los Santos, Herrera and Coclé provinces) were surveyed for molecular
identification, occurrence and distribution of Thrips palmi (the most important pest
thrip species on cucurbits in Panama), Frankliniella intonsa and Frankliniella cephalica
during the growing seasons of 2009 to 2013 and 2017 to 2018. Forty plots were surveyed
and DNA extracts of 186 thrips (larvae and adults) were analyzed by multiplex PCR, using
a set of T. palmi-specific primers in combination with a set of insect-universal primers.
DNA extracts corresponding to 174 individual thrips (93.5%) rendered both PCR products
of expected size with T. palmi-specific and insect-universal primers, whereas the remaining
DNA extracts corresponding to 12 individual thrips (6.5%) only rendered the product
of the expected size with insect-universal primers. Sequencing of those PCR products and
BLAST analysis allowed for the identification of F. intonsa and F. cephalica. Thrips palmi
was detected in all three provinces, while F. intonsa and F. cephalica were detected in Herrera
and Los Santos provinces. To our knowledge, this is not only the first detection of F. intonsa
in Panama, but also the first detection of F. cephalica in Panamanian cucurbit crops.
ACKNOWLEDGEMENTS
We thank the technical personnel of the Dirección Nacional
de Sanidad Vegetal of the Ministerio de Desarrollo
Agropecuario (DNSV MIDA, Panama) and the IDIAP,
as well as the Panamanian cucurbit farmers who helped
with sample collection.
FUNDING
This research was funded by the Secretaría Nacional
de Ciencia, Tecnología e Innovación (SENACYT;
grant 2017-4-ITE16-R2-014) of Panama. The SENACYT,
through the National Research System (SNI)
(grant 151-2018), supported the research activities of
J.A.H.V., who participated with A.B. in a training stage
in the virology laboratory of IVIA, where this research
was partially carried out under L.G.’s supervision
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (38)
1.
Abudurexiti A., Adkins S., Alioto D., Alkhovsky S.V., Avšič--Županc T., Ballinger M.J., Bente D.A., Beer M., Bergeron É., Blair, C.D., et al. 2019. Taxonomy of the order Bunyavirales: update 2019. Archives of Virology 164 (7): 1949–1965. DOI: 10.1007/s00705-019-04253-6.
2.
Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25 (17): 3389–3402. DOI: 10.1093/nar/25.17.3389.
3.
Asokan R., Krishna-Kumar N.K., Kumar V., Ranganath H.R. 2007. Molecular differences in the mitochondrial cytochrome oxidase I (mtCOI) gene and development of a species-specific marker for onion thrips, Thrips tabaci Lindeman, and melon thrips, T. palmi Karny (Thysanoptera: Thripidae), vectors of tospoviruses (Bunyaviridae). Bulletin of Entomological Research 97 (5): 461–470. DOI: 10.1017/S0007485307005147.
4.
Bacci L., Picanço M.C., Moura M.F., Semeão A.A., Fernandes F.L., Morais E.G.F. 2008. Sampling plan for thrips (Thysanoptera: Thripidae) on cucumber. Neotropical Entomology 37 (5): 582–590. DOI: 10.1590/S1519-566X2008000500014.
5.
Barba A., Suris M. 2015. Presencia de Thrips palmi Karny (Thysanoptera: Thripidae) en arvenses asociadas al cultivo de la sandía para la región de Azuero, Panamá. Revista de Protección Vegetal 30 (3): 171. Available on:
http://scielo.sld.cu/scielo.ph... [Accessed: August 21, 2019].
6.
Bethke J.A., Dreistadt S.H., Varela L.G. 2014. Pest Notes: Thrips. Oakland: University of California, Agriculture and Natural Resources, Publication 7429. Available on:
http://ipm.ucanr.edu/PDF/PESTN... [Accessed: October 11, 2019].
8.
Cannon R.J.C., Matthews L., Collins D.W. 2007. A review of the pest status and control options for Thrips palmi. Crop Protection 26 (8): 1089–1098. DOI: 10.1016/j.cropro.2006.10.023.
9.
Childers C.C. 1997. Feeding and oviposition injuries to plants. p. 505–537. In: “Thrips as Crop Pests” (T. Lewis, ed.). CAB International, Wallingford, UK, 736 pp.
10.
De la Rúa P., Simón B., Cifuentes D., Martinez-Mora C., Cenis J.L. 2006. New insights into the mitochondrial phylogeny of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) in the Mediterranean Basin. Journal of Zoological Systematics and Evolutionary Research 44 (1): 25–33. DOI: 10.1111/j.1439-0469.2005.00336.x.
11.
Farris R.E., Ruiz-Arce R., Ciomperlik M., Vasquez J.D., Deleón R. 2010. Development of a ribosomal DNA ITS2 marker for the identification of the thrips, Scirtothrips dorsalis. The Journal of Insect Science 10 (1): 26. DOI: 10.1673/031.010.2601.
12.
Gao Y.F., Gong Y.J., Cao L.J., Chen J.C., Gao Y.L., Mirab-balou M., Chen M., Hoffmann A.A., Wei S.J. 2019. Geographical and interspecific variation in susceptibility of three common thrips species to the insecticide, spinetoram. Journal of Pest Science. DOI: 10.1007/s10340-019-01128-2.
13.
Goldarazena A., Gattesco F., Atencio R., Korytowski C. 2012. An updated checklist of the Thysanoptera of Panama with comments on host associations. Check List 8 (6): 1232–1247. DOI: 10.15560/8.6.1232.
14.
Herrera-Vásquez J.A., Barba-Alvarado A.A. 2013. Identificación de Thrips palmi karny (Thysanoptera: Thripidae) en cultivos de cucurbitáceas en Panamá. Agronomía Mesoamericana 24 (1): 47–55. Available on:
https://www.redalyc.org/articu... [Accessed: August 21, 2019].
15.
Herrera-Vásquez J.A., Córdoba-Sellés M.C., Cebrián M.C., Font-San-Ambrosio M.I., Alfaro-Fernández A., Jordá C. 2013. Viruses of cucurbits in Panama. Journal of Plant Pathology 95 (2): 435–440. DOI: 10.4454/JPP.V95I2.03.
16.
Huang K.S., Lee S.E., Yeh Y., Shen G.S., Mei E., Chang C.M. 2010. Taqman real-time quantitative PCR for identification of western flower thrip (Frankliniella occidentalis) for plant quarantine. Biology Letters 6 (4): 555–557. DOI: 10.1098/rsbl.2009.1060.
17.
Iwaki M., Honda Y., Hanada K., Tochibara H., Yonaha T., Hokama K., Yokoyama T. 1984. Silver mottle disease of watermelon caused by Tomato spotted wilt virus. Plant Disease 68 (11): 1006–1008. DOI: 10.1094/PD-68-1006.
18.
Jones D.R. 2005. Plant viruses transmitted by thrips. European Journal of Plant Pathology 113 (2): 119–157. DOI: 10.1007/s10658-005-2334-1.
19.
Kato K., Handa K., Kameya-Iwaki M. 2000. Melon yellow spot virus: a distinct species of the genus Tospovirus isolated from melon. Phytopathology 90 (4): 422–426. DOI: 10.1094/PHYTO.2000.90.4.422.
20.
Kobayashi K., Hasegawa E. 2012. Discrimination of reproductive forms of Thrips tabaci (Thysanoptera: Thripidae) by PCR with sequence specific primers. Journal of Economic Entomology 105 (2): 555–559. DOI: 10.1603/ec11320.
21.
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35 (6): 1547–1549. DOI: 10.1093/molbev/msy096.
22.
Lin J.S., Wang C.L., Yeh W.B. 2003. Molecular identification of multiplex-PCR and PCR-RFLP for the quarantine pest, Frankliniella occidentalis (Pergande). Formosan Entomology 23: 353–366. Available on:
http://entsocjournal.yabee.com.... PDF [Accessed: August 21, 2019].
23.
Liu Y.C. 2004. Molecular identification of a plant quarantine pest (Frankliniella occidentalis) by one-tube nested PCR targeting ribosomal DNA internal transcribed spacer regions. Plant Protection Bulletin 46 (1): 27–46 Available on:
https://www.cabdirect.org/cabd... [Accessed: August 21, 2019].
24.
MIDA. 2019. Ministerio de Desarrollo Agropecuario. Dirección de Agricultura, Unidad de Planificación, cierre agrícola 2016–2017. Available on:
https://mida.gob.pa/upload/doc... [Accessed: August 21, 2019].
25.
Mouden S., Sarmiento K.F., Klinkhamer P.G.L., Leiss K.A. 2017. Integrated pest management in western flower thrips: past, present and future. Pest Management Science 73 (5): 813–822. DOI: 10.1002/ps.4531.
26.
Mound L.A., Marullo R. 1996. The thrips of Central and South America: an introduction (Insecta: Thysanoptera). Memoirs on Entomology, International, Vol. 6, Florida, USA, 488 pp.
27.
Moura M.F., Picanço M.C., Silva E.M., Guedes R.N.C., Pereira J.L. 2003. Plano de amostragem do biótipo B de Bemisia tabaci na cultura do pepino. Pesquisa Agropecuária Brasileira 38 (12): 1357–1363. DOI: 10.1590/S0100-204X2003001200001.
28.
Nakahara S., Monteiro R.C. 1999. Frankliniella zucchini (Thysanoptera: Thripidae), a new species and vector of Tospovirus in Brazil. Proceedings of the Entomological Society of Washington 101 (2): 290–294.
29.
Perrings C., Dehnen-Schmutz K., Touza J., Williamson M. 2005. How to manage biological invasions under globalization. Trends in Ecology and Evolution 20 (5): 212–215. DOI: 10.1016/j.tree.2005.02.011.
30.
Prins M., Goldbach R. 1998. The emerging problem of tospovirus infection and nonconventional methods of control. Trends in Microbiology 6 (1): 31–35. DOI: 10.1016/S0966-842X(97)01173-6.
31.
Przybylska A., Fiedler Ż., Obrępalska-Stęplowska A. 2016. PCR-RFLP method to distinguish Frankliniella occidentalis, Frankliniella intonsa, Frankliniella pallida and Frankliniella tenuicornis. Journal of Plant Protection Research 56 (1): 60–66. DOI: 10.1515/jppr-2016-0009.
32.
Riley D.G., Joseph S.V., Srinivasan R., Diffie S. 2011. Thrips vectors of tospoviruses. Journal of Integrated Pest Management 2 (1): 1–10. DOI: 10.1603/IPM10020.
33.
Robinson R.W., Decker-Walters D.S. 1997. Cucurbits (Crop Production Science in Horticulture). CAB International, Wallingford, UK, 240 pp.
34.
Smith I.M., McNamara D.G., Scott P.R., Holderness M. 1997. Frankliniella occidentalis. p. 267–272. In: “Quarantine Pests for Europe”. CAB International, Wallingford, UK, 1425 pp.
35.
Vierbergen G. 1995. International movement, detection and quarantine of Thysanoptera pests. p. 119–132. In: “Thrips Biology and Management” (B.L. Parker, M. Skinner, T. Lewis, eds.). Springer, Massachusetts, USA, 636 pp.
36.
Walsh P.S., Metzger D.A., Higuchi R. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10 (4): 506–512. DOI: 10.2144/000114018.
37.
Weng Y., Sun Z. 2011. Major cucurbits crops. p. 1–16. In: “Genetics, Genomics and Breeding of Cucurbits” (Y.H. Wang, T.K. Behera, C. Kole, eds.). CRC Press, Florida, USA, 425 pp.
38.
Yeh W.B., Tseng M.J., Chang N.T., Wu S.Y. 2015. Agronomically important thrips: development of species-specific primers in multiplex PCR and microarray assay using internal transcribed spacer 1 (ITS1) sequences for identification. Bulletin of Entomological Research 105 (1): 52–59. DOI: 10.1017/S000748531400073X.