ORIGINAL ARTICLE
Molecular characterization and pathogenicity of Erwinia spp. associated with pineapple [Ananas comosus (L.) Merr.] and papaya (Carica papaya L.)
More details
Hide details
1
Rice and Industrial Crops Research Centre, MARDI Seberang Perai, P.O. Box 203, 13200 Kepala Batas, Penang, Malaysia
2
School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Submission date: 2015-01-17
Acceptance date: 2015-10-30
Corresponding author
Latiffah Zakaria
School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
Journal of Plant Protection Research 2015;55(4):396-404
KEYWORDS
TOPICS
ABSTRACT
The
Erwinia
species are well-known pathogens of economic importance in Malaysia causing serious damage to high-value
fruit crops that include pineapple [Ananas comosus
(L.) Merr.] and papaya (Carica papaya
L.).The 16S rRNA sequence using eubacteria fD1 and rP2 primers, identified two bacteria species;
Dickeya zeae
from pineapple heart rot, and
Erwinia mallotivora
from papaya
dieback. Phylogenetic analysis based on the neighbor-joining method indicated that all the bacterial isolates clustered in their own
taxa and formed monophyletic clades. From the pathogenicity test, all isolates of
D. zeae
and
E. mallotivora
showed pathogenic reactions on their respective host plants. Genetic variability of these
isolates was assessed using repetitive sequence-based PCR (rep-PCR)
fingerprinting. The results indicated interspecies, and intraspecies variation in both species’ isolates. There were more polymorphic
bands shown by rep-PCR fingerprints than enterobacterial repetitive intergenic consensus (ERIC) and BOX- PCRs, however both species’ isolates produced distinguishable banding patterns. Unweighted pair-group method with arithmetic averages (UPGMA) cluster
analysis indicated that all
Dickeya
and
Erwinia
isolates from the same species were grouped in the same main cluster. Similarity among
the isolates ranged from 77 to 99%. Sequencing of 16S rRNA using eubacteria fD1 and rP2 primers, and rep-PCR fingerprinting revealed diversity among
Dickeya
and
Erwinia
isolates. But this method appears to be reliable for discriminating isolates from pineapple
heart rot and papaya dieback
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (33)
1.
Amin N.M., Bunawan H., Redzuan R.A., Jaganath I.B.S. 2010. Erwinia mallotivora sp., a new pathogen of papaya (Carica papaya) in Peninsular Malaysia. International Journal of Molecular Sciences 12 (1): 39–45.
2.
Avrova A.O., Hyman L.J., Toth R.L., Toth I.K. 2002. Application of amplified fragment length polymorphism fingerprinting for taxonomy and identification of the soft rot bacteria Erwinia carotovora and Erwinia chrysanthemi. Applied and Environmental Microbiology 68 (4): 1499–1508.
3.
Barionovi D., Giorgi S., Stoeger A.R., Ruppitsch W., Scortichini M. 2006. Characterization of Erwinia amylovora strains from different host plants using repetitive sequences PCR analysis, and restriction fragment length polymorphism and Short sequence DNA repeats of plasmid pEA29. Journal of Applied Microbiology 100 (5): 1084–1094.
4.
De Boer S.H., Kelman A. 2001. Gram-negative bacteria. Erwinia Soft Rot Group. p. 56–72. In: “Laboratory Guide for Identification of Plant Pathogenic Bacteria” (N.W. Schaad, J.B. Jones, W. Chun, eds.). The American Phytopathological Society Press, St. Paul, Minnesota, USA, 398 pp.
5.
Gallelli A., Galli M., De Simone D., Zaccardelli M., Loreti S. 2009. Phenotypic and genetic variability of Pectobacterium carotovorum isolated from artichoke in the Sele Valley. Journal of Plant Pathology 91 (3): 757–761.
6.
Georghiou P.R., Doggett A.M., Kielhofner M.A., Stout J.E., Watson D.A., Lupski J.R., Hamill R.J. 1994. Molecular fingerprinting of Legionella species by repetitive element PCR. Journal of Clinical Microbiology 32 (12):2989–2994.
7.
Johnston A. 1957. Bacterial heart rots of the pineapple. Malaysian Agricultural Journal 40: 2–8.
8.
Kelman A. 1953. The bacterial wilt caused by Pseudomonas solanacearum.North Carolina Agriculture Experimental Station Technical Bulletin 99: 194.
9.
Kaneshiro W.S., Burger M., Vine B.G., de Silva A.S., Alvarez A.M. 2008. Characterization of Erwinia chrysanthemi from a bacterial heart rot of pineapple outbreak in Hawaii. Plant Disease 92 (10):1444–1450.
10.
Kwon S.W., Go S.J., Kang H.W., Ryu J.C., Jo J.K. 1997.Phylogenetic analysis of Erwinia species based on 16S rRNA gene sequences.International Journal of Systematic and Evolutionary Microbiology 47: 1061–1067.
11.
Lim W.H. 1985. Diseases and disorders of pineapples in Peninsular Malaysia. MARDI Report 97.
12.
Lee Y.A., Chen K.P., Hsu Y.W. 2006. Characterization of Erwinia chrysanthemi, the softrot pathogen of white flowered calla lily, based on pathogenicity and PCR-RFLP and PFGE analyses. Plant Pathology 55 (4): 530–536.
13.
Ma B., Hibbing M.E., Kim H.S., Reedy R.M., Yedidia I., Breuer J., Charkowski A.O. 2007. Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya.Phytopathology 97: 1150–1163.
14.
Marrero G., Schneider K.L., Jenkins D.M., Alvarez A.M. 2013. Phylogeny and classification of Dickeya based on multilocus sequence analysis.International Journal of Systematic and Evolutionary Microbiology 63 (Pt 9): 3524–3539.
15.
Nabhan S., Wydra K., Linde M., Debener T. 2012. The use of two complementary DNA assays, AFLP and MLSA, for epidemic and phylogenetic studies of pectolytic enterobacterial strains with focus on the heterogeneous species Pectobacterium carotovorum. Plant Pathology 61 (3): 498–508.
16.
Ngadze E., Brady C.L., Coutinho T.A., Van der Waals J.E. 2012. Pectinolytic bacteria associated with potato soft rot and blackleg in South Africa and Zimbabwe. European Journal of Pathology 134 (3): 533–549.
17.
Ochiai H., Horino O., Miyajima K., Kaku H. 2000. Genetic diversity of Xanthomonas oryzae p v.oryzae strains from Sri Lanka. Phytopathology 90: 415–421.
18.
Parkinson N., Stead D., Bew J., Heeney J., Tsror L., Elphinstone J. 2009. Dickeya species relatedness and clade structure determined by comparison of recA sequences. International Journal of Systematic and Evolutionary Microbiology 59 (Pt 10): 2388–2393.
19.
Pitman A.R., Harrow S.A., Visnovsky S.B. 2010. Genetic characterisation of Pectobacterium wasabiae causing soft rot disease of potato in New Zealand. European Journal of Pathology 126 (3): 423–435.
20.
Rohlf F.J. 2000. NTSYSpc: Numerical Taxonomy and Multivariate Analysis System. Version 2.02. Exeter Software, Setauket, New York.
21.
Samson R., Legendre J.B., Christen R., Saux M.F.L., Achouak W., Gardan L. 2005. Transfer of Pectobacterium chrysanthemi(Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. International Journal of Systematic and Evolutionary Microbiology 55: 1415–1427.
22.
Sarkar S.F., Guttman D.S. 2004. Evolution of the core genome of Pseudomonas syringae,a highly clonal, endemic plant pathogen. Applied and Environmental Microbiology 70 (4): 1999–2012.
23.
Sarkar S.F., Gordon J.S., Martin G.B., Guttman D.S. 2006. Comparative genomics of host-specific virulence in Pseudomonas syringae. Genetics 174 (2): 1041–1056.
24.
Seo S.T., Furuya N., Lim C.K., Takanami Y., Tsuchiya K. 2003. Phenotypic and genetic characterization of Erwinia carotovora from mulberry (Morus spp.). Plant Pathology 52 (2): 140–146.
25.
Smith C., Bartz J.A. 1990. Variation in the pathogenicity and aggressiveness of strains of Erwinia carotovora subsp. carotovora isolated from different hosts. Plant Disease74 (7): 505–509.
26.
Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods.Molecular and Biology and Evolution 28 (1): 2731–2739.
27.
Teixeira A.C., Marques A.S., Ferreira M.A. 2009. Low genetic diversity among pathogenic strains of Erwinia psidii from Brazil. Brazilian Journal of Microbiology 40 (3):678–684.
28.
Terta M., Azelmat S., M’hand R.A., Barakate M., Bouteau F., Ennaji M.M. 2012. Molecular typing of Pectobacterium carotovorum isolated from potato tuber soft rot in Morocco. Annals of Microbiology 62 (4): 1411–1417.
29.
Versalovic J., Schneider M., de Bruijn F.J., Lupski J.R. 1994. Genomic fingerprinting of bacteria using repetitive sequence based polymerase chain reaction. Methods in Molecular and Cellular Biology 5: 25–40.
30.
Watcharachaiyakup J., Kositratana W. 2009. Metabolic fingerprinting of Erwinia carotovora isolated from jackfruit, chumphada and vegetable. In: The International Society for Southeast Asian Agricultural Sciences Congress 2009,The Emerald Hotel, Bangkok, Thailand, 23–27 February 2009, 213 pp.
31.
Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173 (2): 697–703.
32.
Wright E.S., Yilmaz L.S., Noguera D.R. 2012. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Applied and Environmental Microbiology 78 (3): 717–725.
33.
Zhang J., Shen H., Pu X., Lin B., Hu J. 2014. Identification of Dickeya zeae as a causal agent of bacterial soft rot in banana in China. Plant Disease 98 (4): 436–442.