ORIGINAL ARTICLE
Mass production of nucleopolyhedrovirus of the satin moth Leucoma salicis (LesaNPV)
 
More details
Hide details
1
Institute of Plant Protection Władysława Węgorka 20, 60-318 Poznań, Poland
 
 
Corresponding author
Jadwiga Ziemnicka
Institute of Plant Protection Władysława Węgorka 20, 60-318 Poznań, Poland
 
 
Journal of Plant Protection Research 2007;47(4):459-467
 
KEYWORDS
TOPICS
ABSTRACT
Nucleopo9lyhedrovirus (NPV) of the satin moth Leucoma Stilpnotia) salicis L. was produced by infecting the larvae with the LesaNPV strain obtained from epizootic center in Katowice. The infected larvae were reared under laboratory, greenhouse and insectarium conditions. Because L. salicis can not be reared on a semi-synthetic food, the insects were maintained on natural products. Efficiency of the mass virus production depended on an insect growth stage, virus concentration and number of infected larvae in a rearing container. The fourth-instar larvae were the best for LesaNPV replication. Inoculation of younger larval stages (third instar stadium) provided less number of inclusion bodies (insects were dying sooner and did not meet their maximum body weight). On the contrary inoculation of older stages (fifth and sixth instars) resulted in slower virus replication and low larva mortality. The virus concentration of 3 x 10 9 of inclusion bodies per container was the optimum inoculum for the mass virus production (double infection with the virus concentration of 1.5 x 10 9 inclusion bodies/1000 larvae). The larvae reared at high-density became more infected and it caused their earlier death and in consequences low virus efficiency. Rearing the insect at low density (less than 10 larvae per 1.0 L container) was conducive for both an increase of insect body mass and virus replication as well. The highest number of inclusion bodies per one larva(5.3 x 10 9 – 7.7 x 10 9) and the highest total number of inclusion bodies (152 x 10 11 – 188 x 10 11) were achieved under these rearing conditions in a greenhouse and insectarium.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (14)
1.
Avtzis N.D. 1990. Development of Leucoma salicis(L.) (Lepidoptera: Lymantriidae) on Populus alba (L.) and poplar clone I-214. Entomologica-Hellenica 8: 25–27.
 
2.
Ciuhrii M. 1996. Main criteria for standarization of quality assessment of viral products based on baculoviruses. Proceedings of the first joint meeting IOBC/WPRS. Bull. IOBC/OJLB Bull. 19 (9): 257–260.
 
3.
Głowacka B. 1989. Choroby Epizootyczne Brudnicy Mniszki (Lymantria monacha L.) i Możliwości Mikrobiologicznego Jej Zwalczania. PWRiL, Warszawa, 72 pp.
 
4.
Grijpma P.J. 1989. Overview of research on Lymantriids in Eastern and Western Europe. p. 21–49. In:Proceedings „Lymantriidae: A Comparison of Features of New and Old World Tussock Moth.” (W.E. Wallner, K.A. McManus, eds.). USDA, NEFS. Gen. Tech. Report NE-123, Broomal, (US), 554 pp.
 
5.
Lameris A.M.C., Ziemnicka J., Peters D., Grijpma P., Vlak J.M. 1985. Potential of baculoviruses for control of the satin moth, Leucoma salicis L. (Lepidoptera: Lymantriidae). Med. Fac Landbouww. Rijksuniv. Gent 50 (2a): 431–439.
 
6.
Lipa J.J., Śliżyński K. 1973. Wskazówki metodyczne i terminologia do wyznaczanie średniej dawki śmiertelnej (LD50) w patologii owadów i toksykologii. Prace Nauk. Inst. Ochr. Roślin 15 (1): 59–83.
 
7.
Shapiro M. 1981. In vivo production at Otis Air base, Mass. p. 464–467. In „The Gypsy Moth: Research Toward Integrated Pest Management” (C.C. Doane, M.L. Mc Manus, eds.). U.S. Dept. of Agriculture, Washington D.C. 1981.
 
8.
Shapiro M., Bell R.A., Owens C.D. 1981. In vivo mass production of gypsy moth nucleopolyhedrosis virus. p. 633–655. In „The Gypsy Moth: Research Toward Integrated Pest Management” (C.C. Doane, M.L. McManus, eds.) US. Dept. of Agriculture, Washington D.C.
 
9.
Smith R.P., Wraight S.P., Tardiff M.F., Hasenstab M.J., Simeone J.B.1976. Mass rearing of Porhetria dispar (L.) (Lepidoptera: Lymantriidae) for in host production of nuclear polyhedrosis virus. N.Y. Entomol. Soc.84: 212–213.
 
10.
Śliżyński K., Lipa J.J. 1973. Wskazówki metodyczne do wyznaczania średniego czasu zamierania (LT 50) w patologii owadów i toksykologii. Prace Nauk. Inst. Ochr. Roślin 15 (1): 85–98.
 
11.
Wagner T.L., Leonard D.E. 1979. The effects of parental and progeny diet on development, weight gain and survival of prediapause larvae of satin moth, Leucoma salicis (Lepidoptera: Lymantriidae).Can. Ent.111: 721–729.
 
12.
Ziemnicka J. 1981. Studies on nuclear and cytoplasmic polyhedrosis viruses of the satin moth (Stilpnotia salicis L.) (Lepidoptera,Lymantriidae). Prace Nauk. Inst. Ochr. Roślin 23 (1):75–142.
 
13.
Ziemnicka J., Lipa J.J., Czuchrij M.O, Wołoszczuk L.F., Gyrlja W.J.1995a. Środek owadobójczy do zwalczania białki wierzbówki. Patent PL 165936.
 
14.
Ziemnicka J., Lipa J.J., Czuchrij M.O, Wołoszczuk L.F., Gyrlja W.J.1995b. Sposób wytwarzania środka owadobójczego do zwalczania białki wierzbówki. Patent PL 165927.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top