ORIGINAL ARTICLE
Low temperature reverses the resistance to glyphosate in hairy fleabane (Conyza bonariensis)
More details
Hide details
1
Department of Agronomy, Universidade Estadual de Londrina, Paraná, Brazil
2
Department of Crop Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2019-02-11
Acceptance date: 2019-05-15
Online publication date: 2020-01-08
Corresponding author
Giliardi Dalazen
Agronomy, Universidade Estadual de Londrina, Celso Garcia Cid, 86057970, Londrina, Brazil
Journal of Plant Protection Research 2019;59(4):433-440
KEYWORDS
TOPICS
ABSTRACT
Environmental factors and the addition of adjuvants to the spray tank mix may interfere with
glyphosate efficiency in hairy fleabane control. The objective of this study was to evaluate
the effect of air temperature and the addition of ammonium sulfate (NH4)2SO4 to glyphosate
in the control of glyphosate-resistant (GR) and -susceptible (GS) hairy fleabane. Treatments
consisted of air temperatures of 12°C and 25°C, six doses of glyphosate from zero to
2,880 g · ha−1, the presence or absence of (NH4)2SO4 in the spray solution, and one GS and
another GR biotype. At the lowest tested dose (180 g · ha−1), control of the GR biotype was
91% and 20% when the plants were kept at 12°C and 25°C, respectively, reducing the resistance
factor (RF) by 9.30 times and was associated to the reduction of temperature. The addition
of (NH4)2SO4 increased the control by 10−20% at high glyphosate doses and at 25°C.
The resistance of hairy fleabane to glyphosate was completely reversed when the plants were
maintained at 12°C. At this temperature, resistant plants were controlled even at doses well
below that recommended for the control of this species. At 25°C, a dose four times higher
than that recommended was required for satisfactory control. At the field level, under situations
of low temperatures, it was possible to improve the efficacy of glyphosate applications
in hairy fleabane control, if there were no other mechanisms of resistance involved.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (35)
1.
Adegas F.S., Vargas L., Gazziero D.L.P., Karam D., Silva A.F., Agostinetto D. 2017. Economic impact of weed resistance to herbicides in Brazil. Circular Técnica 132, EMBRAPA, Londrina-PR. Avaliable on:
https://ainfo.cnptia.embrapa. br/digital/bitstream/item/162704/1/CT132-OL.pdf [Accessed: 15 March 2019].
2.
Agostinetto D., Silva D.R.O., Vargas L. 2017. Soybean yield loss and economic thresholds due to glyphosate resistant hairy fleabane interference. Arquivos do Instituto Biológico 84 (1): 1−8. DOI:
http://dx.doi.org/10.1590/1808....
3.
Aliverdi A., Ganbari A., Rashed Mohassel M., Nassiri-Mahallati M., Zand E. 2014. Overcoming hard water antagonistic to glyphosate or imazethapyr with water conditioners. Notulae Scientia Biologicae 6 (2): 244−249. DOI
http://dx.doi.org/10.15835/nsb....
4.
Bajwa A.A., Sadia S., Ali H.H., Jabran K., Peerzada A.M., Chauhan B.S. 2016. Biology and management of two important Conyza weeds: a global review. Enviromental Science and Pollution Research 23 (24): 24694−24710. DOI:
https://doi.org/10.1007/s11356....
5.
Bromilow R.H., Chamberlain K. 2000. The herbicide glyphosate and related molecules: physicochemical and structural factors determining their mobility in phloem. Pest Management Science 56 (4): 368−373. DOI:
https://doi.org/10.1002/(SICI)....
6.
Carvalho S.J.P., Damin V., Dias A.C.R., Filho H.T., Christoffoleti P.J. 2012. Glyphosate application using solution of urea + ammonium sulfate. Revista Brasileira de Herbicidas 11 (1): 84−95. DOI:
https://doi.org/10.7824/rbh.v1....
7.
Christoffoleti P.J., Galli A.J., Carvalho S.J., Moreira M.S., Nicolai M., Foloni L.L., Martins B.A., Ribeiro D.N. 2008. Glyphosate sustainability in South American cropping systems. Pest Management Science 64 (4): 422−427. DOI:
https://doi.org/10.1002/ps.156....
8.
Gauvrit C. 2003. Glyphosate response to calcium, ethoxylated amine surfactant, and ammonium sulfate. Weed Technology 17 (4): 799−804. DOI:
https://doi.org/10.1614/0890-0....
9.
Ge X., d’Avignon D.A., Ackerman J.J., Collavo A., Sattin M., Ostrander E.L., Hall E.L., Sammons R.D., Preston C. 2012. Vacuolar glyphosate-sequestration correlates with glyphosate resistance in ryegrass (Lolium spp.) from Australia, South America, and Europe: a 31P NMR investigation. Journal of Agricultural and Food Chemistry 60 (5): 1243−1250. DOI:
https://doi.org/10.1021/jf2034....
10.
Ge X., d’Avignon A., Ackerman J.J.H., Duncan B., Sammons R.D. 2011. Glyphosate-resistant horseweed made sensitive to glyphosate: low-temperature suppression of glyphosate vacuolar sequestration revealed by 31P NMR. Pest Management Science 67 (10): 1215−1221. DOI:
https://doi.org/10.1002/ps.216....
11.
Ge X., d’Avignon A., Ackerman J.J.H., Sammons R.D. 2010. Rapid vacuolar sequestration: the horseweed glyphosate resistance mechanism. Pest Management Science 66 (4): 345−348. DOI:
https://doi.org/10.1002/ps.191....
12.
Ge X., d’Avignon A., Ackerman J.J.H., Sammons R.D. 2014. In vivo 31P-nuclear magnetic resonance studies of glyphosate uptake, vacuolar sequestration, and tonoplast pump activity in glyphosate-resistant horseweed. Plant Physiology 166 (3): 55−84. DOI:
https://doi.org/10.1104/pp.114....
13.
González-Torralva F., Rojano-Delgado A.M., Luque de Castro M.D., Mülleder N., De Prado R. 2012. Two non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq) biotypes. Journal of Plant Physiology 169 (17): 1673−1679. DOI:
https://doi.org/10.1016/j.jplp....
14.
Heap I.M. 2019. International Survey of Herbicide Resistant Weeds. Weed Science Society of America. Available on:
http://www.weedscience.org/. [Assessed: January 23, 2019].
15.
Jordan D.L., York A.C., Griffin J.L., Clay P.A., Vidrine P.R., Reynolds D.B. 1997. Influence of application variables on efficacy of glyphosate. Weed Technology 11 (2): 354−362. DOI:
https://doi.org/10.1017/S08900....
16.
Kaspary T.E., Lamego F.P., Cutti L., Aguiar A.C.D., Rigon C.A.G., Basso C.J. 2017. Growth, phenology, and seed viability between glyphosate-resistant and glyphosate-susceptible hairy fleabane. Bragantia 76 (1): 92−101. DOI:
http://dx.doi.org/10.1590/1678....
17.
Kleinman Z., Ben-Ami G., Rubin G. 2016. From sensitivity to resistance − factors affecting the response of Conyza spp. to glyphosate. Pest Management Science 72 (9): 1681−1688. DOI:
https://doi.org/10.1002/ps.418....
18.
Kleinman Z., Rubin B. 2017. Non-target-site glyphosate resistance in Conyza bonariensis is based on modified subcellular distribution of the herbicide. Pest Management Science 73 (1): 246−253. DOI:
https://doi.org/10.1002/ps.429....
19.
Mahoney K.J., Nurse R.E., Sikkema P.H. 2014. The effect of hard water, spray solution storage time, and ammonium sulfate on glyphosate efficacy and yield of glyphosate-resistant corn. Canadian Journal of Plant Science 94 (8): 1401–1405. DOI:
https://doi.org/10.4141/cjps-2....
20.
Maschhoff J.R., Hart S.E., Baldwin J.L. 2000. Effect of ammonium sulfate on the efficacy, absorption, and translocation of glufosinate. Weed Science 48 (1): 2−6. DOI: 10.1614/0043-1745(2000)048[0002:EOASOT]2.0.CO;2.
21.
Moretti M.L., Hanson B.D. 2017. Reduced translocation is involved in resistance to glyphosate and paraquat in Conyza bonariensis and Conyza canadensis from California. Weed Research 57 (1): 25−34. DOI:
https://doi.org/10.1111/wre.12....
22.
Mueller T.C., Main C.L., Thompson M.A., Steckel L.E. 2006. Comparison of glyphosate salts (isopropylamine, diammonium and potassium) and calcium and magnesium concentrations on the control of various weeds. Weed Technology 20 (1): 164−171. DOI:
https://doi.org/10.1614/WT-05-....
23.
Nurse R.E., Hamill A.S., Kells J.J., Sikkema P.H. 2008. Annual weed control may be improved when AMS is added to below-label glyphosate doses in glyphosate-tolerant maize (Zea mays L.). Crop Protection 27 (3−5): 452−458. DOI:
https://doi.org/10.1016/j.crop....
24.
Okada O., Hanson B.D., Hembree K.J., Peng X., Shrestha A., Stewart Jr C.N., Wright S.D., Jasieniuk M. 2014. Evolution and spread of glyphosate resistance in Conyza bonariensis in California and a comparison with closely related Conyza canadensis. Weed Research 55 (2): 173–184. DOI:
https://doi.org/10.1111/wre.12....
25.
Powles S.B., Yu Q. 2010. Evolution in action: plants resistant to herbicides. Annual Review of Plant Biology 61 (1): 317−347. DOI:
https://doi.org/10.1146/annure....
26.
Pratt D., Kells J.J., Penner D. 2003. Substitutes for ammonium sulfate as additives with glyphosate and glufosinate. Weed Technology 17 (3): 576−581. DOI:
https://doi.org/10.1614/0890-0....
27.
Ramsdale B.K., Messersmith C.G., Nalewaja J.D. 2003. Spray volume, formulation, ammonium sulfate, and nozzle effects on glyphosate efficacy. Weed Technology 17 (3): 589−598. DOI:
https://doi.org/10.1614/WT02-1....
30.
Seefeldt S.S., Jensen J.E., Fuerst E.P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technology 9 (2): 218−227. DOI:
https://doi.org/10.1017/S08900....
32.
Shrestha A., Steinhauer K.M., Hanson B.D., Jasieniuk M., Hembree K.J., Wright S.D. 2016. Growth and development of fall- and spring-planted populations of Conyza canadensis and C. bonariensis. International Journal of Pest Management 62 (4): 300−307. DOI:
https://doi.org/10.1080/096708....
33.
Yamashita O.M., Guimarães S.C. 2011. Biology and herbicide resistance of Conyza species. Ambiência 7 (2): 383−398. DOI: 80.5777/ambiencia.2011.02.02rb.
34.
Young B.G., Knepp A.W., Wax L.M., Hart S.E. 2003. Glyphosate translocation in common lambsquarters (Chenopodium album) and velvetleaf (Abutilon theophrasti) in response to ammonium sulfate. Weed Science 51 (2): 151−156. DOI:
https://doi.org/10.1614/0043-1....
35.
Yu Q., Huang S., Powles S. 2010. Direct measurement of paraquat in leaf protoplasts indicates vacuolar paraquat sequestration as a resistance mechanism in Lolium rigidum. Pesticide Biochemistry and Physiology 98 (1): 104−109. DOI:
https://doi.org/10.1016/j.pest....