ORIGINAL ARTICLE
Intercropping and diverse field margin vegetation suppress bean aphid (Homoptera: Aphididae) infestation in dolichos (Lablab purpureus L.)
More details
Hide details
1
Crops, Horticulture and Soils, Egerton University, Kenya
2
Biological Sciences, Egerton University, Kenya
3
Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, UK
4
Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2021-05-29
Acceptance date: 2021-07-22
Online publication date: 2021-10-06
Journal of Plant Protection Research 2021;61(3):290-301
KEYWORDS
TOPICS
ABSTRACT
Dolichos (Lablab purpureus L.) is a drought tolerant legume used as food/feed and im-
provement of soil fertility. The production of dolichos in Kenya, Nakuru County is
however limited by insect pests like bean aphids, pod borers and whiteflies. Field stud-
ies were conducted to determine the effect of cropping systems (dolichos monocrop and
maize-dolichos intercrop) and field margin vegetation on bean aphids and their natural
enemies. The experiment was conducted in Njoro (high field margin vegetation) and Ron-
gai (low field margin vegetation) during May–December 2019 and March−November 2020
cropping seasons. Bean aphid percent incidence, severity of damage and abundance was
assessed at seedling, early vegetative, late vegetative and flowering dolichos growth stages.
The populations of natural enemies in the plots and field margin vegetation were monitored
using pan traps and sweep nets. Species diversity and composition of the field margin ve-getation was determined using a quadrat. Results showed that location and cropping system
had significant effects on bean aphid infestations. A high bean aphid incidence (38.13%)
was observed in Njoro compared to Rongai (31.10%). Dolichos monocrop had significantly
higher bean aphid infestation (51.63%) than the maize-dolichos intercrop system (24.62%).
A highly diverse Shannon-weaver index was observed in Rongai (1.90) compared to Njoro
(1.67). Dolichos monocrop had a more diverse Shannon-weaver index (1.8) than the maize-
dolichos intercrop system (1.7). Rongai had the most abundant annual and perennial field
margin vegetation species. The field margin species richness and diversity were higher
in Rongai (81%) than in Njoro (54%). The findings of this study have demonstrated that
a maize-dolichos intercrop in Rongai can reduce bean aphid damage in dolichos.
ACKNOWLEDGEMENTS
his work was made
possible through collaboration of farmers in Rongai
and Njoro sub-counties of Nakuru County, Kenya. The
institutional support offered by Egerton University is
appreciated.
FUNDING
This research was funded by the Natural Pest Re-
gulation on Orphan Crop Legumes in Africa
(NaPROCLA) project under the Biotechnology and
Biological Sciences Research Council (BBSRC) agre-
ement number BB/R020361/1.
RESPONSIBLE EDITOR
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (50)
1.
Abate T., van Huis A., Ampofo J.K.O. 2000. Pest management strategies in traditional agriculture: an African perspective. Annual Review of Entomology 45 (1): 631−659. DOI:
https://doi.org/10.1146/annure....
2.
Amaral D.S., Venzon M., Duarte M.V., Sousa F.F., Pallini A., Harwood J.D. 2013. Non-crop vegetation associated with chili pepper agroecosystems promote the abundance and survival of aphid predators. Biological Control 64 (3): 338−346. DOI:
https://doi.org/10.1016/j.bioc....
3.
Arnett R.H., Jacques R.L. 1981. Simon and Schuster’s guide to insects. Simon and Schuster.
4.
Asbjornsen H., Hernandez-Santana V., Liebman M., Bayala J., Chen J., Helmers M., Ong C.K., Schulte L.A. 2014. Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services. Renewable Agriculture and Food Systems 29 (2): 101−125. DOI:
https://doi.org/10.1017/S17421....
5.
Bajwa A.A., Mahajan G., Chauhan B.S. 2015. Nonconventional weed management strategies for modern agriculture. Weed Science 63 (4): 723−747. DOI:
https://doi.org/10.1614/WS-D-1....
6.
Balzan M.V., Moonen A.C. 2014. Field margin vegetation enhances biological control and crop damage suppression from multiple pests in organic tomato fields. Entomologia Experimentalis et Applicata 150 (1): 45−65. DOI:
https://doi.org/10.1111/eea.12....
7.
Cheruiyot E.K., Mumera L.M., Nakhone L.N., Mwonga S.M. 2003. Effect of legume-managed fallow on weeds and soil nitrogen in following maize (Zea mays L.) and wheat (Triticum aestivum L.) crops in the Rift Valley highlands of Kenya. Australian Journal of Experimental Agriculture 43 (6): 597−604. DOI: 10.1071/EA02033.
9.
Damalas C.A., Eleftherohorinos I.G. 2011. Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health 8 (5): 1402−1419. DOI: 10.3390/ijerph8051402.
10.
De Bello F., Lepš J., Sebastià M.T. 2006. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29 (6): 801−810. DOI:
https://doi.org/10.1111/j.2006....
11.
Dixon A.F.G. 2012. Aphid ecology an optimization approach. Springer Science & Business Media.
12.
Dixon A.F.G., Agarwala B.K. 1999. Ladybird-induced lifehistory changes in aphids. Proceedings of the Royal Society of London. Series B: Biological Sciences 266 (1428): 1549−1553.
13.
Dostálek T., Rokaya M.B., Münzbergová Z. 2018. Altitude, habitat type and herbivore damage interact in their effects on plant population dynamics. PloS One 13 (12): e0209149. DOI:
https://doi.org/10.1371/journa....
14.
Elsharkawy M.M., El-Sawy, M.M. 2015. Control of bean common mosaic virus by plant extracts in bean plants. International Journal of Pest Management 61 (1): 54−59. DOI:
https://doi.org/10.1080/096708....
15.
Farkas Á., Molnár R., Morschhauser T., Hahn I. 2012. Variation in nectar volume and sugar concentration of Allium ursinum L. ssp. ucrainicum in three habitats. The Scientific World Journal 2012: 138579. DOI: 10.1100/2012/138579.
16.
Farooq M., Jabran K., Cheema Z.A., Wahid A., Siddique K.H. 2011. The role of allelopathy in agricultural pest management. Pest Management Science 67 (5): 493−506. DOI: 10.1002/ps.2091.
17.
Forrest J.R. 2016. Complex responses of insect phenology to climate change. Current Opinion in Insect Science 17: 49−54. DOI: 10.1016/j.cois.2016.07.002.
18.
Glaze-Corcoran S., Hashemi M., Sadeghpour A., Jahanzad E., Afshar R.K., Liu X., Herbert S.J. 2020. Understanding intercropping to improve agricultural resiliency and environmental sustainability. Advances in Agronomy 162: 199−256. DOI: ttps://doi.org/10.1016/bs.agron.2020.02.004.
19.
González E., Salvo A., Valladares G. 2020. Insects moving through forest-crop edges: a comparison among sampling methods. Journal of Insect Conservation 24 (2): 249−258. DOI: 10.1007/s10841-019-00201-6.
20.
Grez A.A., Gonzalez R.H. 1995. Resource concentration hypothesis: effect of host plant patch size on density of herbivorous insects. Oecologia 103 (4): 471−474.
21.
Guerrieri E., Digilio M.C. 2008. Aphid-plant interactions: a review. Journal of Plant Interactions 3 (4): 223−232.
22.
He H.M., Liu L.N., Munir S., Bashir N.H., Yi W.A.N.G., Jing Y.A.N.G., Li C.Y. 2019. Crop diversity and pest management in sustainable agriculture. Journal of Integrative Agriculture 18 (9): 1945−1952. DOI:
https://doi.org/10.1016/S2095-....
23.
Hrček J., McLean A.H., Godfray H.C.J. 2016. Symbionts modify interactions between insects and natural enemies in the field. Journal of Animal Ecology 85 (6): 1605−1612. DOI:
https://doi.org/10.1111/1365-2....
24.
Jaetzold R., Hornetz B., Shisanya C.A., Schmidt H. 2012. Farm management handbook of Kenya Vol I-IV (Western Central Eastern Nyanza Southern Rift Valley Northern Rift Valley Coast). Nairobi: Government Printers.
25.
Khan Z.R., Pickett J.A. 2004. The ‘push-pull’strategy for stemborer management: a case study in exploiting biodiversity and chemical ecology. Ecological engineering for pest management: Advances in Habitat Manipulation for Arthropods. p. 155−164. In: “Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods” (S.D. Pratten, M.A. Altieri, G.M. Gurr, eds.). CABI International, Wallingford, Oxon (CABI).
26.
Leksono A.S., Batoro J., Zairina A. 2018. Abundance and composition of arthropods in a paddy field collected by pan traps. In: AIP Conference Proceedings. AIP Publishing LLC, 2019, No. 1, p. 04002.
27.
Li J., Wang Z., Tan K., Qu Y., Nieh J.C. 2014. Giant Asian honeybees use olfactory eavesdropping to detect and avoid ant predators. Animal Behaviour 97: 69−76. DOI:
https://doi.org/10.1016/j.anbe....
28.
Lopes T., Hatt, S. Xu, Q., Chen J., Liu Y. Francis F. 2016. Wheat (Triticum aestivum L.)‐based intercropping systems for biological pest control. Pest Management Science 72 (12): 2193−2202. DOI:
https://doi.org/10.1002/ps.433....
29.
Mahajan M., Fatima S. 2017. Frequency, abundance, and density of plant species by list count quadrat method. International Journal of Multidisciplinary Research 3 (7): 1−8.
30.
Mbata G.N., Shu S., Phillips T.W. Ramaswamy S.B. 2004. Semiochemical cues used by Pteromalus cerealellae (Hymenoptera: Pteromalidae) to locate its host, Callosobruchus maculatus (Coleoptera: Bruchidae). Annals of the Entomological Society of America 97 (2): 353−360. DOI:
https://doi.org/10.1093/aesa/9....
31.
Mkenda P., Mwanauta R., Stevenson P.C., Ndakidemi P., Mtei K. Belmain S.R. 2015. Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides. PLoS One 10 (11): e0143530. DOI: 10.1371/journal.pone.0143530.
32.
Nahashon C.K., Benson M.M., Stephen M.M. 2016. Effects of irrigated and rain-fed conditions on infestation levels of thrips (Thysanoptera: Thripidae) infesting Dolichos lablab (L.) in Eastern Kenya. African Journal of Agricultural Research 11 (18): 1656−1660. DOI: 10.5897/AJAR2015.10721.
33.
Njarui D.M.G. Mureithi J.G. 2010. Evaluation of lablab and velvet bean fallows in a maize production system for improved livestock feed supply in semiarid tropical Kenya. Animal Production Science 5 (3): 193−202. DOI: 10.1071/AN09137.
34.
Novgorodova T.A., Gavrilyuk A.V. 2012. The degree of protection different ants (Hymenoptera: Formicidae) provide aphids (Hemiptera: Aphididae) against aphidophages. European Journal of Entomology 109 (2): 187−196.
35.
Perdikis D., Fantinou A., Lykouressis D. 2011. Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biological Control 59 (1): 13−21. DOI:10.1016/j.biocontrol.2011.03.014.
36.
Pielou E.C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13: 131−144.
37.
Quicke D.L. 2015. The Braconid and Ichneumonid Parasitoid Wasps: Biology, Systematics, Evolution and Ecology. John Wiley & Sons, 740 pp. DOI: 10.1002/9781118907085.
38.
Rekha C., Mallapur C.P. 2009. Studies on pests of dolichos beans in northern Karnataka. Agricultural Science 2: 407−409.
39.
Root R.B. 1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monograph 43 (1): 95−124. DOI:
https://doi.org/10.2307/194216....
40.
SAS Institute inc. 2002. SAS for Windows v. 8. Cary, NC, U.S.A.
41.
Saunders M.E., Luck G.W. 2013. Pan trap catches of pollinator insects vary with habitat. Australian Journal of Entomology 52 (2): 106−113. DOI:
https://doi.org/10.1111/aen.12....
42.
Soetan K.O., Fafunso M.A. 2010. Studies on the proximate and mineral composition of three varieties of lablab beans (Lablab purpureus). International Journal of Applied Agricultural Research 5 (3): 291−300.
43.
Songa J.M., Jiang N., Schulthess F., Omwega C. 2007. The role of intercropping different cereal species in controlling lepidopteran stem borers on maize in Kenya. Journal of Applied Entomology 131 (1): 40−49. DOI: 10.1111/j.1439-0418.2006.01116.x.
44.
Spafford R.D., Lortie C.J. 2013. Sweeping beauty: is grassland arthropod community composition effectively estimated by sweep netting? Ecology and Evolution 3 (10): 3347−3358. DOI: 10.1002/ece3.688.
45.
Sujayanand G.K., Sharma R.K., Shankarganesh K., Saha S., Tomar R.S. 2015. Crop diversification for sustainable insect pest management in eggplant (Solanales: Solanaceae). Florida Entomologist 98 (1): 305−314. DOI:
https://doi.org/10.1653/024.09....
46.
Thejaswi L., Mohan I., Naik M., Majunatha M. 2007. Studies of population dynamics of pests’ complex of field beans (Lablab purpureus L.) and natural enemies of pod borers. Karnataka Agriculture Science 3: 399−402.
47.
Tiroesele B., Obopile M., Karabo O. 2019. Insect diversity and population dynamics of natural enemies under sorghum-legume intercrops. Transactions of the Royal Society of South Africa 74 (3): 258−267. DOI:
https://doi.org/10.1080/003591...
48.
Vellichirammal N.N., Gupta P., Hall T.A., Brisson J.A. 2017. Ecdysone signaling underlies the pea aphid trans gene-rational wing polyphenism. Proceedings of the National Academy of Sciences 114 (6): 1419−1423. DOI:
https://doi.org/10.1073/pnas.1....
49.
Wäckers F.L., Romeis J., van Rijn P. 2007. Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annuals Review Entomology 52: 301−323. DOI: 10.1146/annurev.ento.52.110405.091352.
50.
Webster B., Cardé R.T. 2017. Use of habitat odour by host‐ ‐seeking insects. Biological Reviews 92 (2): 1241−1249. DOI: 10.1111/brv.12281.