ORIGINAL ARTICLE
Induction of systemic resistance to Orobanche crenata in lentil by exogenous application of salicylic acid and indole acetic acid
More details
Hide details
1
Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research, Rabat, Morocco
2
Department of Biotechnology and Plant Physiology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
3
Department of Crop Production, Protection and Biotechnology, Institute of Agronomy and Veterinary Medicine Hassan II, Rabat, Morocco
4
Agro-sciences (AgBS), University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2022-09-21
Acceptance date: 2022-11-21
Online publication date: 2023-03-15
Corresponding author
Rachid Mentag
Biotechnology Research Unit, Regional Center of Agricultural Research of Rabat, National Institute of Agricultural Research,
Rabat, Morocco
Journal of Plant Protection Research 2023;63(1):83-96
HIGHLIGHTS
- Salicylic acid (SA) must be applied at concentration of 1 mM
- Indole acetic acid (IAA) must be applied at concentration of 0.09 mM
- SA and IAA treatments reduced O. crenata infestation in lentil by activation of SAR
- IAA acts as growth hormone and as inducer of systemic resistance (SAR) in lentil
- SA and IAA treatments increased activities of phenol metabolizing enzymes
KEYWORDS
TOPICS
ABSTRACT
Orobanche crenata parasitism on lentil (Lens culinaris Medik) is one of the most destructive
factors for this crop in Morocco. Field and pot assays were performed to study the mitigation
of O. crenata stress on two lentil genotypes, Bakria (partially resistant to O. crenata)
and Zaaria (susceptible), using salicylic acid (SA) and indole acetic acid (IAA). These two
hormones were applied separately at concentrations of 1 mM and 0.09 mM, respectively,
using seed pre-treatment and/or foliar spray methods. SA and IAA seed pre-treatment
for the susceptible genotype Zaaria and foliar spray for the resistant genotype Bakria gave
the best control of O. crenata under field and controlled conditions. This control reached
~91% in Zaaria and 83% in Bakria and was sometimes accompanied by an increase in plant
growth and seed yield compared to the untreated plants. Biochemical assays showed that
SA and IAA reduced O. crenata infestation in lentil through induction of systemic acquired
resistance characterized by increasing activities of phenol metabolizing enzymes (phenylalanine
ammonia-lyase, peroxidase, and polyphenol oxidase) implicated in natural defense
systems of plants. Treatment of plants with SA or IAA could be an alternative strategy of
crop protection with more satisfactory preservation of the environment.
FUNDING
This research was supported by the National Institute
of Agricultural Research of Morocco (INRA) and Ministry
of Higher Education, Scientific Research and Professional
Training of Morocco (MESRSFC) through
funding of the MEDILEG project within the European
Union 7th Framework program for research, technological
development and demonstration (ERA-Net
Project, ARIMNet).
RESPONSIBLE EDITOR
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (55)
1.
Abbes Z., Kharrat M., Delavault P., Simier P., Chaïbi W. 2007. Field evaluation of the resistance of some faba bean (Vicia faba L.) genotypes to the parasitic weed Orobanche foetida Poiret. Crop Protection 26 (12): 1777–1784.
2.
Abbes Z., Mkadmi M., Trabelsi I., Amri M., Kharrat M. 2014. Orobanche foetida control in faba bean by foliar application of Benzothiadiazole (BTH) and salicylic aci. Bulgarian Journal of Agricultural Science 20 (6): 1439–1443.
3.
Abdel-Kader M.M., El-Mougy N.S. 2009. Prospects of mycoherbicides for control of broomrapes (Orobanche spp.) in Egypt. Journal of Plant Protection Research 49 (1): 63–75.
4.
Achuo E.A., Audenaert K., Meziane H., Höfte M. 2004. The salicylic acid-dependent defence pathway is effective against different pathogens in tomato and tobacco. Plant Pathology 53 (1): 65–72.
5.
Almas D.E., Kamrodi A.R. 2019. Defense responses of rice plant to Monographella albescens attack. Journal of Plant Protection Research: 535–543. DOI: 10.24425/jppr.2019.131268.
6.
Al-Wakeel S.A.M., Moubasher H., Gabr M.M.A., Madany M.M.Y. 2012. Induction of systemic resistance in tomato plants against Orobanche ramosa L. using hormonal inducers. Egyptian Journal of Botany 52 (2): 403–416.
7.
Al-Wakeel S.A., Moubasher H., Madan M.M. 2013. Induced systemic resistance: an innovative control method to manage branched broomrape (Orobanche ramosa L.) in tomato. European Journal of Biology 72 (1): 9–21.
8.
Amri M., Abbes Z., Trabelsi I., Ghanem M. E., Mentag R., Kharrat M. 2021. Chlorophyll content and fluorescence as physiological parameters for monitoring Orobanche foetida Poir. infection in faba bean. Plos One 16 (5): e0241527.
9.
Amri M., Niane A.A., Agrawal S.K., Kemal S.A., Hamwieh A., Amri A. 2019. Principales activités des programmes d’amélioration génétique de la lentille et du pois chiche Kabuli à ICARDA. Innovations Agronomiques 74: 15–24.
10.
Andreotti G., Koutros S., Hofmann J.N., Sandler D.P., Lubin J.H., Lynch C.F., Beane Freeman L.E. 2018. Glyphosate use and cancer incidence in the agricultural health study. JNCI: Journal of the National Cancer Institute 110 (5): 509–516.
11.
Beckman C.H. 2000. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants?. Physiological and Molecular Plant Pathology 57 (3): 101–110.
12.
Bigirimana J., Höfte M. 2002. Induction of systemic resistance to Colletotrichum lindemuthianum in bean by a benzothiadiazole derivative and rhizobacteria. Phytoparasitica 30: 159–168.
13.
Briache F.Z., Ennami M., Mbasani-Mansi J., Gaboun F., Abdelwahd R., Fatemi Z.E.A., Mentag R. 2019. Field and controlled conditions screenings of some faba bean (Vicia faba L.) genotypes for resistance to the parasitic plant Orobanche crenata Forsk. and investigation of involved resistance mechanisms. Journal of Plant Diseases and Protection 126: 211–224.
14.
Briache F.Z., Ennami M., Mbasani-Mansi J., Lozzi A., Abousalim A., El Rodeny W., Mentag R. 2020. Effects of salicylic acid and indole acetic acid exogenous applications on induction of faba bean resistance against Orobanche crenata. The Plant Pathology Journal 36 (5): 476.
15.
Buschmann H., Fan Z.W., Sauerborn J. 2005. Effect of resistance-inducing agents on sunflower (Helianthus annuus L.) and its infestation with the parasitic weed Orobanche cumana Wallr./Auswirkungen Resistenz induzierender Agenzien auf die Sonnenblume (Helianthus annuus L.) und ihren Befall mit dem parasitischen Unkraut Orobanche cumana Wallr. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection: 386–397.
16.
Casadesús A., Munné-Bosch S. 2021. Holoparasitic plant–host interactions and their impact on Mediterranean ecosystems. Plant Physiology 185 (4): 1325–1338.
17.
Chakraborty M.R., Chatterjee N.C. 2007. Interaction of Trichoderma harzianum with Fusarium solani during its pathogenesis and the associated resistance of the host. Asian Journal of Experimental Science 21 (2): 353–357.
18.
Das S., Aggrawal, S and DV Singh DV. 2012. Differential induction of defense related enzymes involved in lignin biosynthesis in wheat in response to spot blotch infection. Indian Phytopathology 56 (2): 129–133.
19.
Eizenberg H., Goldwasser Y., Golan S., Plakhine D., Hershenhorn J. 2004. Egyptian broomrape (Orobanche aegyptiaca) control in tomato with sulfonylurea herbicides greenhouse studies. Weed Technology 18 (3): 490–496.
20.
Elsakhawy T., ALKahtani M.D., Sharshar A.A., Attia K.A., Hafez Y.M., Abdelaal K.A. 2020. Efficacy of mushroom metabolites (Pleurotus ostreatus) as a natural product for the suppression of broomrape growth (Orobanche crenata Forsk) in faba bean plants. Plants 9 (10): 1265.
21.
En-nahli Y., El Arroussi H., Kumar S., Bouhlal O., Mentag R., Hejjaoui K., Amri M. 2021. Resistance to Orobanche crenata Forsk. in lentil (Lens culinaris Medik.): exploring some potential altered physiological and biochemical defense mechanisms. Journal of Plant Interactions 16 (1): 321–331.
22.
Ennami M., Mbasani-mansi J., Briache F. Z., Oussible N., Gaboun F., Ghaouti L., Mentag R. 2020. Growth-defense tradeoffs and source-sink relationship during both faba bean and lentil interactions with Orobanche crenata Forsk. Crop Protection 127: 104924.
24.
Gutjahr C., Paszkowski U. 2009. Weights in the balance: jasmonic acid and salicylic acid signaling in root-biotroph interactions. Molecular Plant-Microbe Interactions 22 (7): 763–772.
25.
Heil M., Hilpert A., Kaiser W., Linsenmair K.E. 2000. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs?. Journal of Ecology 88 (4): 645–654.
26.
Hossain M.S., Dietz K.J. 2016. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress. Frontiers in Plant Science 7: 548.
27.
Jacobsohn R., Eldar E. 1992. Imazethapyr for broomrape control in peas. Phytoparasitica 20: 345. Johal, G.S., Huber D.M. 2009. Glyphosate effects on diseases of plants. European Journal of Agronomy 31 (3): 144–152.
28.
Kaczmarek D.K., Kleiber T., Wenping L., Niemczak M., Chrzanowski Ł., Pernak J. 2020. Transformation of indole-3-butyric acid into ionic liquids as a sustainable strategy leading to highly efficient plant growth stimulators. ACS Sustainable Chemistry Engineering 8 (3): 1591–1598.
29.
Kamal A.E.A., Mohamed H.M., Aly A.A., Mohamed H.A. 2008. Enhanced onion resistance against Stemphylium leaf blight disease, caused by Stemphylium vesicarium, by Di-potassium phosphate and benzothiadiazole treatments. Plant Pathology Journal 24 (2): 171–177.
30.
Katoch R., Mann A.P.S., Sohal B.S. 2005. Enhanced enzyme activities and induction of acquired resistance in pea with elicitors. Journal of Vegetable Science 11 (1): 67–83.
31.
Kukawka R., Czerwoniec P., Lewandowski P., Pospieszny H., Smiglak M. 2018. New ionic liquids based on systemic acquired resistance inducers combined with the phytotoxicity reducing cholinium cation. New Journal of Chemistry 42 (14): 11984–11990.
32.
Kusumoto D., Goldwasser Y., Xie X., Yoneyama K., Takeuchi Y., Yoneyama K. 2007. Resistance of red clover (Trifolium pratense) to the root parasitic plant Orobanche minor is activated by salicylate but not by jasmonate. Annals of Botany 100 (3): 537–544.
33.
Laskar R.A., Khan S., Deb C.R., Tomlekova N., Wani M.R., Raina A., Amin R. 2019. Lentil (Lens culinaris Medik.) diversity, cytogenetics and breeding. Advances in Plant Breeding Strategies: Legumes: 7: 319–369.
34.
Lavanya S.N., Niranjan Raj S., Nayaka S.C., Amruthesh K.N. 2017. Systemic protection against pearl millet downy mildew disease induced by cell wall glucan elicitors from Trichoderma hamatum UOM 13. Journal of Plant Protection Research 57 (3): 298–308.
35.
Lopez A.M.Q., and Lucas J.A. 2002. Effects of plant defence activators on anthracnose disease of cashew. European Journal of Plant Pathology 108: 409–420.
36.
Mbasani-Mansi J., Briache F.Z., Ennami M., Gaboun F., Benbrahim N., Triqui Z.E.A., Mentag R. 2019. Resistance of Moroccan lentil genotypes to Orobanche crenata infestation. Journal of Crop Improvement 33 (3): 306–326.
37.
Mesa-Garcia J., Garcia-Torres L. 1985. Orobanche crenata (Forsk) control in Vicia faba (L.) with glyphosate as affected by herbicide rates and parasite growth stages. Weed Research 25 (2): 129–134.
38.
Ojha S., Chakraborty M.R., Chatterjee N.C. 2005. Activities of phenol oxidizing enzymes in anthracnose disease of Saraca asoca under pathogenesis. Indian Biology 37 (2): 9–11.
40.
Pérez-de-Luque A., Jorrín J.V., Rubiales D. 2004. Crenate broomrape control in pea by foliar application of benzothiadiazole (BTH). Phytoparasitica 32: 21–29.
41.
Perez L., Rodriguez M.E., Rodriguez F., Roson C. 2003. Efficacy of acibenzolar-S-methyl, an inducer of systemic acquired resistance against tobacco blue mould caused by Peronospora hyoscyami f. sp. tabacina. Crop Protection 22 (2): 405–413. Polle A., Otter T., Seifert F. 1994. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiology 106 (1): 53–60.
42.
Pradeep T., Jambhale N.D. 2002. Cytomorphological studies in relation to powdery mildew resistance in ber (Zizhyphus mauritiana Lamk.). Indian Journal of Genetics and Plant Breeding 62 (01): 46–51.
43.
Qamar A., Mysore K.S., Senthil-Kumar M. 2015. Role of proline and pyrroline-5-carboxylate metabolism in plant defense against invading pathogens. Frontiers in plant science 6: 503.
44.
Razavifar Z., Karimmojeni H., Sini F. G. 2017. Effects of wheatcanola intercropping on Phelipanche aegyptiaca parasitism. Journal of Plant Protection Research 57 (3): 268–274. DOI:
https://doi.org/10.1515/jppr-2....
45.
Sauerborn J., Buschmann H., Ghiasi K.G., Kogel K.H. 2002. Benzothiadiazole activates resistance in sunflower (Helianthus annuus) to the root-parasitic weed Orobanche cuman. Phytopathology 92 (1): 59–64.
46.
Sijilmassi B., Filali-Maltouf A., Boulahyaoui H., Kricha A., Boubekri K., Udupa S., Amri A. 2020. Assessment of genetic diversity and symbiotic efficiency of selected Rhizobia strains nodulating lentil (Lens culinaris Medik.). Plants 10 (1): 15.
47.
Sillero J.C., Rojas-Molina M.M., Ávila C.M., Rubiales D. 2012. Induction of systemic acquired resistance against rust, ascochyta blight and broomrape in faba bean by exogenous application of salicylic acid and benzothiadiazole. Crop Protection 34: 65–69.
48.
Šindelářová M., Šindelář L., Burketová L. 2002. Glucose-6-phosphate dehydrogenase, ribonucleases and esterases upon tobacco mosaic virus infection and benzothiodiazole treatment in tobacco. Biologia Plantarum 45: 423–432.
49.
Solecka D., Kacperska A. 2003. Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiologia Plantarum 119 (2): 253–262.
50.
Spychalski M., Kukawka R., Krzesiński W., Spiżewski T., Michalecka M., Poniatowska A., Smiglak, M. 2021. Use of new BTH derivative as supplement or substitute of standard fungicidal program in strawberry cultivation. Agronomy 11 (6): 1031.
51.
Torres-Vera R., García J.M., Pozo M.J., López-Ráez J.A. 2016. Expression of molecular markers associated to defense signaling pathways and strigolactone biosynthesis during the early interaction tomato-Phelipanche ramosa. Physiological and Molecular Plant Pathology 94: 100–107.
52.
Triki E., Trabelsi I., Amri M., Nefzi F., Kharrat M., Abbes Z. 2018. Effect of benzothiadiazole and salicylic acid resistance inducers on Orobanche foetida infestation in Vicia faba. Tunisian Journal of Plant Protection 13 (1): 113–125.
53.
Ueno M., Kumura Y., Ueda K., Kihara J., Arase S. 2011. Indole derivatives enhance resistance against the rice blast fungus Magnaporthe oryzae. Journal of General Plant Pathology 77: 209–213.
54.
Véronési C., Delavault P., Simier P. 2009. Acibenzolar-S-methyl induces resistance in oilseed rape (Brassica napus L.) against branched broomrape (Orobanche ramosa L.). Crop Protection 28 (1): 104–108.
55.
Wang S., Fu J. 2011. Insights into auxin signaling in plant-pathogen interactions. Frontiers in plant science 2: 74.