ORIGINAL ARTICLE
 
HIGHLIGHTS
  • Analysis of deep Learning Methods for cocoa tree disease detection
  • K-means++ for Achor box optimization
  • Loss Function Optimization for YOLOv5m
  • The Swin Transformer for multi-scale feature acquisition
KEYWORDS
TOPICS
ABSTRACT
The cocoa tree is prone to diverse diseases such as stem borer, stem canker, swollen shot, and root rot disease which impedes high yield. Early disease detection is a critical component of diverse management processes that are implemented throughout the life cycle of cocoa plants. Consequently, several studies on the application of detection techniques to recognize diseases have been proposed by several researchers. This study proposes the YOLOv5m network for cocoa tree disease detection. The development of cocoa disease detection systems will aid farmers in early identification prompt response, and efficient management of related cocoa tree diseases which will ultimately increase yield and sustainability. To improve the performance of the YOLOv5m network, a Swin Transformer (Swin-T) was added to the backbone network to improve cocoa tree disease detection accuracy. By obtaining global information, the K-means++ algorithm was added to modify the choice of initial clustering locations, and Efficient Intersection over Union Loss (EIoU) was used as a bounding box regression loss function to speed up the bounding box regression rate, resulting in higher precision of the YOLOv5m network. The experimental assessment outcome of this study showed that the proposed method YOLOv5m (Swin-T, K-means++, EIoU) achieved 96% precision, mAP of 92%, and recall of 94%. Compared to the original YOLOv5m, precision improved by 5%, mAP improved by 6%, and recall by 5%. Comparing the proposed method to the conventional YOLOv5m, the latter showed improved performance and better accuracy with a high detection speed and compactness. This improvement offers a useful and effective method for detecting diseases related to cocoa trees.
RESPONSIBLE EDITOR
Piotr Iwaniuk
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (30)
1.
Adeniyi D.O., Asogwa E.U. 2023. Chapter 14 – Complexes and diversity of pathogens and insect pests of cocoa tree. Forest Microbiology. Tree Diseases and Pests 3: 285–311. DOI: https://doi.org/10.1016/B978-0....
 
2.
Ambele C.F., Bisseleua H.D., Djuideu C.T., Akutse K.S. 2023. Managing insect services and disservices in cocoa agroforestry systems. Agroforestry Systems: 1–20. DOI: https://doi.org/10.1007/s10457....
 
3.
Ameyaw G.A., Chingandu N., Domfeh O., Dzahini-Obiatey H.K., Gutiérrez O.A., Brown J.K. Variable detection of cacao swollen shoots disease-associated badnaviruses by PCR amplification. p. 13–17. In: “Proceedings of International Symposium on Cocoa Research (ISCR)”. Lima, Peru. DOI: https://doi/full/10.5555/20203....
 
4.
Angira A., Sharma T., Choudhary N., Rishi N., Verma H.N., Awasthi L.P. 2024. Viral diseases of field and Horticultural Crops. Academic Press: 15–21. DOI: https://doi.org/10.1016/B978-0....
 
5.
Appiah A.A. 2023. Evaluation of progress in cocoa crop protection and management. IntechOpen: 216. DOI: https://doi.org/10.5772/intech....
 
6.
Argout X., Droc G., Fouet O., Rouard M., Labadie K., Rhoné B., Rey Loor G., Lanaud C. 2023. Pangenomic exploration of Theobroma cacao: new insights into gene content diversity and selection during domestication. bioRxiv: 2023.2011.2003.565324. DOI: https://doi.org/10.1101/2023.1....
 
7.
Bacea D.-S., Oniga F. 2023. Single-stage architecture for improved accuracy real-time object detection on mobile devices. Image and Vision Computing 130: 104613. DOI: https://doi.org/10.1016/j.imav....
 
8.
Bahadur A., Dutta P. 2023. Diseases of commercial crops and their integrated management. CRC Press: 38–52. DOI: https://doi.org/10.4324/978103....
 
9.
Bhatti U. A., Bazai S. U., Hussain S., Fakhar S., Ku C. S., Marjan S., Yee P. L., Jing L. 2023. Deep learning-based trees disease recognition and classification using hyperspectral data. Computers, Materials & Continua 77 (1): 681–697. DOI: https://doi.org/10.32604/cmc.2....
 
10.
Bissiri Y.H.-T., Ollo S., Maurice K.L.M., Senan S., Kolo Y. 2023. Socio-entomological characterisation of cocoa orchards in the haut-sassandra region (Côte d’Ivoire). Journal of Entomology and Zoology Studies 11 (3): 42–48. DOI: https://doi.org/10.22271/j.ent....
 
11.
Bose T., Spies C.F., Hammerbacher A., Coutinho T.A. 2023. Phytophthora: an underestimated threat to agriculture, forestry, and natural ecosystems in sub-Saharan Africa. Mycological Progress 22 (11): 78. DOI: https://doi.org/10.1007/s11557....
 
12.
Coulibaly M., Kouassi K., Kolo S., Asseu O. 2020. Detection of “swollen shoot” disease in Ivorian cocoa trees via convolutional neural networks. Engineering 12: 166–176. DOI: https://doi.org/10.4236/eng.20....
 
13.
Debnath A.J., Dutta P., Bahadur A. 2023. Diseases of commercial crops and their integrated management. CRC Press: 38–52 DOI: https://doi.org/10.4324/978103....
 
14.
Diwan T., Anirudh G., Tembhurne J.V. 2023. Object detection using YOLO: challenges, architectural successors, datasets and applications. Multimedia Tools and Applications 82 (6): 9243–9275. DOI: https://doi.org/10.1007/s11042....
 
15.
George A.A. 2019. Management of the cacao swollen shoot virus (CSSV) menace in Ghana: The past, present and the future. Plant Diseases. T.-P. Snježana. IntechOpen. Rijeka 1–13 DOI: https://doi.org/10.5772/intech....
 
16.
Gong X., Zhang S. 2023. An analysis of plant diseases identification based on deep learning methods. The Plant Pathology Journal 39 (4): 319. DOI: https://doi.org/10.5423%2FPPJ.....
 
17.
Hacinas E.A., Querol L., Acero L.A., Arcelo M., Amalin D., Rustia D.J. 2022. Automated cocoa pod borer detection using an edge computing-based deep learning algorithm. In: Proceedings of "ASABE Annual International Meeting”. Houston, Texas, USA. DOI: https://doi.org/10.13031/aim.2....
 
18.
Kingsley-Umana E., Asogwa E., Mokwunye I. 2022. Outbreak, distribution and damage characteristics of cocoa stem borer, eulophonotus myrmeleon felder 1874 (Lepidoptera: Cossidae) in major cocoa producing states in Nigeria. Advances in Entomology 10: 175–185. DOI: https://doi.org/10.4236/ae.202....
 
19.
Kumi S., Kelly D., Woodstuff J., Lomotey R.K., Orji R., Deters R. 2022. Cocoa companion: Deep learning-based smartphone application for cocoa disease detection. Procedia Computer Science 203: 87–94. DOI: https://doi.org/10.1016/j.proc....
 
20.
Muller E. 2016. Cacao swollen shoot virus (CSSV): history, biology, and genome. p. 337–358. In: “Cacao Diseases” (Bailey B., Meinhardt L., eds.). Springer, Cham DOI: https://doi.org/10.1007/978-3-....
 
21.
Nandini M.L.N. 2023. Detection of plant diseases and pests using deep learning models: a recent research. Chelonian Research Foundation 18 (2): 474–501. DOI: https://doi.org/10.18011/2023.....
 
22.
Nyadanu D., Akromah R., Adomako B., Kwoseh C., Lowor S.T., Dzahini-Obiatey H., Akrofi A.Y., Assuah M.K. 2012. Inheritance and general combining ability studies of detached pod, leaf disc and natural field resistance to Phytophthora palmivora and Phytophthora megakarya in cacao (Theobroma cacao L.). Euphytica 188 (2): 253–264. DOI: https://doi.org/10.1007/s10681....
 
23.
Okali C. 2023. Female and male in West Africa. Routledge: 169–178 DOI: https://doi.org/10.4324/978100....
 
24.
Puig A.S. 2023. Fungal pathogens of cacao in Puerto Rico. Plants 12 (22): 3855. DOI: https://doi.org/10.3390/plants....
 
25.
Ramos-Sobrinho R., Kouakou K., Bi A. B., Keith C. V., Diby L., Kouame C., Aka R. A., Marelli J.-P., Brown J. K. 2021. Molecular detection of cacao swollen shoot badnavirus species by amplification with four PCR primer pairs, and evidence that cacao swollen shoot Togo B virus-like isolates are highly prevalent in Côte d’Ivoire. European Journal of Plant Pathology 159 (4): 941–947. DOI: https://doi.org/10.1007/s10658....
 
26.
Rodriguez C., Alfaro O., Paredes P., Esenarro D., Hilario F. 2021. Machine learning techniques in the detection of cocoa (Theobroma cacao L.) diseases. Annals of the Romanian Society for Cell Biology 25 (3): 7732–7741.
 
27.
Shoaib M., Shah B., Ei-Sappagh S., Ali A., Ullah A., Alenezi F., Gechev T., Hussain T., Ali F. 2023. An advanced deep learning models-based plant disease detection: A review of recent research. Frontiers in Plant Science 14: 1158933. DOI: https://doi.org/10.3389/fpls.2....
 
28.
Snell N. 2023. Modern medicines from plants. CRC Press: 51–62. DOI: https://doi.org/10.1201/978100....
 
29.
Wang S., Wang Y., Chang Y., Zhao R., She Y. 2023. EBSE-YOLO: high precision recognition algorithm for small target foreign object detection. IEEE Access 11: 57951–57964. DOI: https://doi.org/10.1109/ACCESS....
 
30.
Yan Y. 2022. Using the improved SSD algorithm to motion target detection and tracking. Computational Intelligence and Neuroscience 2022 (1): 1886964.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top