ORIGINAL ARTICLE
Impact of chemical weed management in sugar beet (Beta vulgaris) on productivity, quality and economics
More details
Hide details
1
Agronomy Department, Poznań University of Life Sciences, Faculty of Agriculture, Horticulture and Bioengineering, Poznań, Poland
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2023-07-27
Acceptance date: 2023-08-17
Online publication date: 2023-10-04
Corresponding author
Łukasz Sobiech
Agronomy Department, Poznań University of Life Sciences, Faculty of Agriculture, Horticulture and Bioengineering, Poznań, Poland
Journal of Plant Protection Research 2023;63(4):459-467
HIGHLIGHTS
- The use of appropriately selected herbicides in a micro-rates system (significantly reduced rates of agents with the addition of adjuvant) helps to reduce the number of chemicals used, and thus the number of substances reaching the habitat.
KEYWORDS
TOPICS
ABSTRACT
Weeds in sugar beet (Beta vulgaris L.) can contribute to a significant reduction in the root
yield. The species composition of these plants is an important factor influencing the competition
with crops. The aim of the 2-year field experiment with mixtures of: phenmedipham
+ ethofumesate + metamitron + quinmerac; ethofumesate + metamitron + metamitron +
+ quinmerac + triflusulfuron-methyl; phenmedipham + ethofumesate + metamitron +
+ quinmerac + triflusulfuron-methyl + clopyralid + lenacil, and phenmedipham + ethofumesate
+ metamitron + quinmerac + triflusulfuron-methyl + clopyralid applied in split
doses, microdoses and Conviso Smart technology was to determine the weed species community
composition and effectiveness of weed control strategies. The most common species
occurring in both years were: Chenopodium album L., Fallopia convolvulus L., and Geranium
pusillum L. The communities had the highest values of biodiversity indices in 2020
and lower values in 2021. There were no statistically significant differences in the herbicidal
effectiveness of the tested herbicidal technologies over both years of research and for individual
main weed species – 95–99%. The use of all herbicide variants contributed to achieving
significantly higher yields than untreated treatments, and contributed to an increase in
profitability of cultivation, but this result depended on the selected strategy. The presented
herbicide solutions were characterized by direct income at a similar level.
ABBREVIATIONS
DMg – Margalef diversity index
H’ – the Shannon index
D – Simpson`s index of diversity
Ss – Sorensen coefficient of similarity index
RF – Relative frequency
OM – organic matter
LS – loamy sand
CO – foramsulfuron + thiencarbazone-methyl
P – phenmedipham + ethofumesate
G – metamitron + quinmerac
T – ethofumesate + metamitron
S – triflusulfuron-methyl
M – clopyralid
V – lenacil
I – surfactant
N – normal
D – dry
W – warm
AW – anomalously warm
CL – loss of sugar productivity
TSO – technological sugar output (%)
CS – sucrose content in roots (%)
YTSC – technological sugar yield
YRY – root yield (t · ha–1)
RESPONSIBLE EDITOR
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (30)
1.
Abou-Zied Kh.A., Abd El-All A. E. A., Osman A.M. 2017. Response of sugar beet yield and water use efficiency to deficit irrigation and weed competition under drip irrigation system. Journal of Plant Production 8 (12): 1295–1302. DOI: 10.21608/JPP.2017.41983.
2.
Artyszak A., Gozdowski D., Kucińska K. 2014. The yield and technological quality of sugar beet roots cultivated in mulches. Plant, Soil and Environment 60 (10): 464–469. DOI: 10.17221/428/2014-PSE.
3.
Bailey K.L., Falk S., Derby J., Melzer M., Boland G.J. 2013. The effect of fertilizers on the efficacy of the bioherbicide, Phomamacrostoma, to control dandelions in turfgrass. Biological Control 65: 147–151. DOI:
https://doi.org/10.1016/j.bioc....
4.
Cioni F., Maines G. 2010. Weed control in sugar beet. Sugar Tech 12: 243–255. DOI: 10.1007/s12355-010-0036-2.
6.
Gawęda D., Cierpiała R., Harasim E., Haliniarz M. 2016. Effect of tillage systems on yield, weed infestation and seed quality elements of soybean. Acta Agrophysica 23: 175–187.
7.
Götze P., Kenter C., Wendt M.J., Ladewig E. 2018. Übersicht zu wirksamkeitsversuchen von Conviso® one in zuckerrüben. Julius Kühn-Archiv 458: 497–499. DOI: 10.5073/jka.2018.458.074.
8.
Hammond M.E., Pokorný R. 2020. Diversity of tree species in gap regeneration under tropical moist semi-deciduous forest: an example from Bia Tano Forest reserve. Diversity 12: 301. DOI:10.3390/d12080301.
9.
ICUMSA. 2022. ICUMSA Methods Book 2022. International Commission for Uniform Methods of Sugar Analysis. Bartens, 978-3-87040-661-5.
10.
Iglesias-Rios R., Mazzoni R. 2014. Measuring diversity: Looking for processes that generate diversity. Natureza & Conservação 12: 156–161. DOI:
https://doi.org/10.1016/j.ncon....
11.
Ivaschenko O., Ivaschenko O. 2019. Physiological role of epicuticular waxes for plants and their practical significance. Вісник аграрної науки Причорномор'я 97: 12–20. DOI:
https://doi.org/10.31073/agrov....
12.
Jakubowska M., Cyplik A., Bocianowski J., Wielkopolan B. 2020. Effect of selected chemical features on the technological value of sugar beet yield after application of treatments on soil pests. [Wpływ wybranych cech chemicznych na wartość technologiczną plonu buraka cukrowego po zastosowaniu zabiegów na szkodniki glebowe]. Progress in Plant Protection 60 (4): 275–282. DOI: 10.14199/ppp-2020-029 (in Polish with English abstract).
13.
Kaya R. 2012. Possibilities of reducing herbicide use in weed control in sugar beet production. Anadolu Journal of Agricultural Sciences 27: 133–139. DOI: org/10.7161/anajas.2012.273.133.
14.
Kraehmer H., van Almsick A., Beffa R., Dietrich H., Eckes P., Hacker E., Hain R., Strek H.J., Stuebler H., Willms, L. 2014. Herbicides as weed control agents: State of the art: II. recent achievements. Plant Physiology 166: 1132–1148. DOI: 10.1104/pp.114.241992.
15.
Krähmer H., Walter H., Jeschke P., Haaf K., Baur P., Evans R. 2021. What makes a molecule a pre- or a post-herbicide – How valuable are physicochemical parameters for their design? Pest Management Science 77: 4863–4873. DOI: 10.1002/ps.6535.
16.
Krawczyk R., Kierzek R., Matysiak K. 2009. Mikrodawki herbicydów w uprawie buraka cukrowego w rolnictwie zrównoważonym. Problemy Inżynierii Rolniczej 2: 83–92.
17.
Kucharski M. 2009. Changes in application system – influence on herbicides residue in soil and sugar beet roots. Journal of Plant Protection Research 49 (4): 421–425.
18.
Kumar D., Jayaswal D., Jangra A., Mishra K.K., Yadav S. 2018. Recent approaches for herbicide resistance management in weeds: a review. International Journal of Chemical Studies 6 (4): 2844–2850.
19.
Kunz C., Weber J.F., Gerhards R. 2015. Benefits of precision farming technologies for mechanical weed control in soybean and sugar beet – Comparison of precision hoeing with conventional mechanical weed control. Agronomy 5: 130–142. DOI: 10.3390/agronomy5020130.
20.
Löbmann A., Christen O., Petersen J. 2019. Development of herbicide resistance in weeds in a crop rotation with acetolactate synthase-tolerant sugar beets under varying selection pressure. Weed Research 59: 479–489. DOI: 10.1111/wre.12385.
21.
Lorenc H., Suwalska-Bogucka M. 1996. Thermal tendencies of winters in Poland as the indicator of climate variability. Zeszyty Naukowe UJ, Prace Geografczne 102: 365–374. (in Polish).
22.
Pätzold S., Hbirkou C., Dicke D., Gerhards R., Welp G. 2020. Linking weed patterns with soil properties: A long-term case study. Precision Agriculture 21: 569–588. DOI:
https://doi.org/10.1007/s11119....
23.
Pawlonka Z., Rymuza K., Starczewski K., Bombik A. 2014. Biodiversity of segetal weed communities when chlorsulfuron-basedweed control is being used on continuous winter wheat. Journal of Plant Protection Research 54: 300–305. DOI:
https://doi.org/10.2478/jppr-2....
24.
Placido H.F., Santos R.F., Oliveira Júnior R.S., Marco L.R., Silva A.F.M., Barroso A.M., Albrecht A.J.P., Victoria Filho R. 2022. Morphological characterization of the foliar surface in glyphosate-resistant tall windmill grass. Agronomy Journal 114: 641–650. DOI: 10.1002/agj2.20893.
25.
Polet Y. 2021. Report Name: Sugar Annual (Report Number: E42021-0041).
26.
Rizk T.Y., Kholousy A.S.O., Saudy H.S., Sultan Sh.S., Abd Alwahed S.H.A. 2023. Breaking dormancy and enhancing germination of Avena sterilis L. and Amaranthus retroflexus L. weeds by gibberellic acid and potassium nitrate to keep soil and crops healthy. Gesunde Pflanzen 75: 757–763. DOI:
https://doi.org/10.1007/s10343....
27.
Robinson T.M.P., Gross K.L. 2010. The impact of altered precipitation variability on annual weed species. American Journal of Botany 97 (10): 1625–1629. DOI:10.3732/ajb.1000125.
28.
Sarabi V., Mohassel M. H. R., Valizadeh M. 2011. Response of redroot pigweed (Amaranthus retroflexus L.) to tank mixtures of 2,4-D plus MCPA with foramsulfuron. Australian Journal of Crop Science 5 (5): 605–610.
30.
Wujek B., Kucharski M., Domaradzki K. 2012. Weed control programs in sugar beet (Beta vulgaris L.): Influence on herbicidal residue and yield quality. Journal of Food, Agriculture & Environment 10 (3–4): 606–609.