ORIGINAL ARTICLE
Identifying the key motif essential for enhancing plant defense against Botrytis cinerea by β-glucanase from Bacillus velezensis LJ02
More details
Hide details
1
Horticulture and Landscape Architecture, Tianjin Agriculture University, Tianjin, China
2
College of Engineering and Technology Architecture, Tianjin Agriculture University, Tianjin, China
3
Horticulture and Landscape Architecture, Tianjin Agriculture Univeresity, Tianjin, China
These authors had equal contribution to this work
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2024-02-23
Acceptance date: 2024-04-10
Online publication date: 2024-09-11
Corresponding author
Yuanhong Wang
Horticulture and Landscape Architecture, Tianjin Agriculture Univeresity, Tianjin, China
Journal of Plant Protection Research 2024;64(3):253-262
HIGHLIGHTS
- β-glucanase improves the protective effect of N. benthamiana to B. cinerea
- Amino acids 5-54 in β-glucanase are necessary for the induction of plant defense responses
- qRT-PCR showed that the expression of PTI marker gene induced by N54 was significantly inhibited
KEYWORDS
TOPICS
ABSTRACT
The glycosyl hydrolase β-glucanase elicits plant immune responses against pathogens and
enhances plant immunity by activating signaling pathways. The specific functional domains
responsible for disease prevention remain unclear. In this study, transient expression of
β-glucanase significantly increased leaves resistance to Botrytis cinerea in Nicotiana benthamiana
systemic leaves. Through sequence alignment and similarity analysis, five conserved
motifs in the amino acid sequence of β-glucanase were identified, and five deletion mutants
were generated to investigate its essential regions further. Notably, the N-terminal amino
acid sites 5-54 deletion mutation of β-glucanase decreased resistance to B. cinerea infection.
These results indicate that N-terminal amino acids 5-54 (N54) are crucial for β-glucanase
induced N. benthamiana defense response and for enhancing resistance to B. cinerea. Further
analysis using real-time quantitative fluorescent PCR (qRT-PCR) revealed a significant
reduction in gene expression within the N54 region compared to that of unmutated
β-glucanase. Additionally, there was a notable reduction in the relative expression levels of
FRK, CYP71D20, WRKY7, WRKY8, ACRE31 and PTI genes. Therefore, the first 50 amino
acids at positions 5-54 within the N-terminal domain were essential for triggering plant
defense responses and enhancing resistance against B. cinerea infection. This study provides
an important theoretical foundation for systematic investigation into key functional
domains within β-glucanase that trigger defensive responses in plants against B. cinerea.
ACKNOWLEDGEMENTS
We wish to thank the Science and technology projects
of Gansu (22CX8NH226); Science and technology
projects of Gansu (23CXNH0014) for supporting this
work.
RESPONSIBLE EDITOR
Dzarifah Zulperi
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (42)
1.
Asai T., Tena G., Plotnikova J., Willmann M.R., Chiu W. ., Gomez-Gomez L., Boller T., Ausubel F.M., Sheen J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415: 977–983. DOI:
https://doi.org/10.1038/415977....
2.
Block A., Toruño T.Y., Elowsky C.G., Zhang C., Steinbrenner J., Beynon J., Alfano J.R. 2014. The Pseudomonas syringae type III effector HopD1 suppresses effector-triggered immunity, localizes to the endoplasmic reticulum, and targets the Arabidopsis transcription factor NTL9. New Phytologist 201: 1358–1370. DOI:
https://doi.org/10.1111/nph.12....
3.
Buerstmayr M., Wagner C., Nosenko T., Omony J., Steiner B., Nussbaumer T., Mayer K.F.X., Buerstmayr H. 2021. Fusarium head blight resistance in European winter wheat: insights from genome-wide transcriptome analysis. BMC Genomics 22: 470. DOI:
https://doi.org/10.1186/s12864....
4.
Chisholm S.T., Coaker G., Day B., Staskawicz B.J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124: 803–814. DOI:
https://doi.org/10.1016/j.cell....
5.
Dagvadorj B., Ozketen A.C., Andac A., Duggan C., Bozkurt T.O., Akkaya M.S. 2017. A Puccinia striiformis f. sp. tritici secreted protein activates plant immunity at the cell surface. Scientific Reports 7 (1): 1141. DOI: 10.1038/s41598-017-01100-z.
6.
Dean R., Van K. J.A.L., Pretorius Z.A., Hammond-Kosack K.E., Pietro A.D., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J., Foster G.D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13: 414–430. DOI:
https://doi.org/10.1111/j.1364....
7.
Dempsey D.A., Klessig D.F. 2012. SOS – too many signals for systemic acquired resistance? Trends in Plant Science 17: 538–545. DOI:
https://doi.org/10.1016/j.tpla....
8.
Heese A., Hann D. R., Gimenez-Ibanez S., Jones A. M. E., He K., Li J., Schroeder J. I., Peck S. C., Rathjen J. P. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the National Academy of Sciences of the United States of America 104: 12217–12222. DOI:
https://doi.org/10.1073/pnas.0....
9.
Hu J., Chang R., Yuan Y., Li Z., Wang Y. 2022. Identification of key residues essential for the activation of plant immunity by subtilisin from Bacillus velezensis LJ02. Frontiers in Microbiology 13: 869596. DOI:
https://doi.org/10.3389/fmicb.....
10.
Ho T.-H., Chuang C.-Y., Zheng J.-L., Chen H.-H., Liang Y.-S., Huang T.-P., Lin Y.-H. 2020. Bacillus amyloliquefaciens strain PMB05 intensifies plant immune responses to confer resistance against bacterial wilt of tomato. Phytopathology® 110: 1877–1885. DOI:
https://doi.org/10.1094/PHYTO-....
11.
Ishihama N., Yoshioka H. 2012. Post-translational regulation of WRKY transcription factors in plant immunity. Current Opinion in Plant Biology 15: 431–437. DOI:
https://doi.org/10.1016/j.pbi.....
12.
Ji M., Wu X., Yao K., Chen H., Yang J., Wang L., Zhuang Y. 2014. Identification of strawberry anthracnose pathogens and screening of germicides. Journal of Agricultural Science and Technology 15: 94. DOI:
https://doi.org/10.16175/j.cnk....
13.
Ky I., Lorrain B., Jourdes M., Pasquier G., Fermaud M., Gény L., Rey P., Donèche B., TEISSEDRE P.L. 2012. Assessment of grey mould (Botrytis cinerea) impact on phenolic and sensory quality of Bordeaux grapes, musts and wines for two consecutive vintages. Australian Journal of Grape and Wine Research 18: 215–226.
14.
Livak K. J., Schmittgen T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402–408. DOI:
https://doi.org/10.1006/meth.2....
15.
Li Y., Gu Y., Li J., Xu M., Wei Q., Wang Y. 2015. Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Frontiers in Microbiology 6: 883. DOI:
https://doi.org/10.3389/fmicb.....
16.
Li Z., He Y., Luo T., Zhang X., Wan H., Ur R.A., Bao X., Zhang Q., Chen J., Xu R., Deng Y., Zeng Y., Xu J., Hong N., Li F., Cheng Y. 2019. Identification of key residues required for RNA silencing suppressor activity of p23 protein from a mild strain of Citrus tristeza virus. Viruses 11: 782. DOI:
https://doi.org/10.3390/v11090....
17.
Li Z., Hu J., Sun Q., Zhang X., Chang R., Wang Y. 2022. A novel elicitor protein phosphopentomutase from Bacillus velezensis LJ02 enhances tomato resistance to Botrytis cinerea. Frontiers In Plant Science 13: 1064589. DOI:
https://doi.org/10.3389/fpls.2....
18.
Ma Z., Song T., Zhu L., Ye W., Wang Y., Shao Y., Dong S., Zhang Z., Dou D., Zheng X., Tyler B.M., Wang Y. 2015. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27: 2057–2072. DOI:
https://doi.org/10.1105/tpc.15....
19.
Marchal C., Zhang J., Zhang P., Fenwick P., Steuernagel B., Adamski N.M., Boyd L., McIntosh R., Wulff B.B.H., Berry S., Lagudah E., Uauy C. 2018. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nature Plants 4: 662–668. DOI:
https://doi.org/10.1038/s41477....
20.
Mishra P., Mishra J., Dwivedi S., Arora N.K. 2020. Microbial enzymes in biocontrol of phytopathogens. p. 259–285. In: “Microbial Enzymes: Roles and Applications in Industries”. Springer. DOI:
https://doi.org/10.1007/978-98....
21.
Mishina T.E., Zeier J. 2007. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant Journal 50: 500–513. DOI:
https://doi.org/10.1111/j.1365....
22.
Pieterse C.M., Pierik R., Van Wees S.C. 2014. Different shades of JAZ during plant growth and defense. New Phytologist 204 (2): 261–264. DOI:
https://doi.org/10.1111/nph.13....
23.
Pi L., Yin Z., Duan W., Wang N., Zhang Y., Wang J., Dou D. 2022. A G-type lectin receptor-like kinase regulates the perception of oomycete apoplastic expansin-like proteins. Journal of Integrative Plant Biology 64: 183–201. DOI:
https://doi.org/10.1111/jipb.1....
24.
Prasannath K. 2017. Plant defense-related enzymes against pathogens: a review. AGRIEAST: Journal of Agricultural Sciences 11: 38–48. DOI:
https://doi.org/10.4038/agriea....
25.
Qi T., Zhu X., Tan C., Liu P., Guo J., Kang Z., Guo J. 2018. Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust. Plant Biotechnology Journal 16: 797–807. DOI:
https://doi.org/10.1111/pbi.12....
26.
Romanazz G., Smilanick J. L., Feliziani E., Droby S. 2016. Integrated management of postharvest gray mold on fruit crops. Postharvest Biology and Technology 113: 69–76. DOI:
https://doi.org/10.1016/j.post....
27.
Shen L., Yang S., Yang F., Guan D., He S. 2020. CaCBL1 Acts as a positive regulator in pepper response to Ralstonia solanacearum. Molecular Plant-Microbe Interactions 33: 945–957. DOI:
https://doi.org/10.1094/mpmi-0....
28.
Shoresh M., Harman G.E., Mastouri F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48: 21–43. DOI:
https://doi.org/10.1146/annure....
29.
Sudhir K., Glen S., Michael L., Christina K., Koichiro T. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. DOI:
https://doi.org/10.1093/molbev....
30.
Sun Z.B., Xu J.L., Lu X., Zhang W., Ji C., Ren Q. 2020. Directed mutation of β-glucanases from probiotics to enhance enzymatic activity, thermal and pH stability. Archives of Microbiology 202: 1749–1756. DOI:
https://doi.org/10.1007/s00203....
31.
Tunsagool P., Jutidamrongphan W., Phaonakrop N., Jaresitthikunchai J., Roytrakul S., Leelasuphakul W. 2019. Insights into stress responses in mandarins triggered by Bacillus subtilis cyclic lipopeptides and exogenous plant hormones upon Penicillium digitatum infection. Plant Cell Reports 38: 559–575. DOI:
https://doi.org/10.1007/s00299....
32.
Verma D., Satyanarayana T. 2012. Molecular approaches for ameliorating microbial xylanases. Bioresource Technology 117: 360–367. DOI:
https://doi.org/10.1016/j.bior....
33.
Wang N., Liu M., Guo L., Yang X., Qiu D. 2016. A novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in N. benthamiana. International Journal of Biological Sciences 12: 757. DOI:
https://doi.org/10.7150/ijbs.1....
34.
Xin D.W., Liao S., Xie Z.P., Hann D.R., Steinle L., Boller T., Staehelin C. 2012. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp. strain NGR234. PLoS Pathogens 8: e1002707. DOI:
https://doi.org/10.1371/journa....
35.
Xing Y., Chen W. H., Jia W., Zhang J. 2015. Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress. Journal of Experimental Botany 66: 5971–5981. DOI:
https://doi.org/10.1093/jxb/er....
36.
Xiong F., Liu M., Zhuo F., Yin H., Deng K., Feng S., Liu Y., Luo X., Feng L., Zhang S., Li Z., Ren M. 2019. Host-induced gene silencing of BcTOR in Botrytis cinerea enhances plant resistance to grey mould. Molecular Plant Pathology 20: 1722–1739. DOI:
https://doi.org/10.1111/mpp.12....
37.
Xu Y., Liu F., Zhu S., Li X. 2018. The Maize NBS-LRR gene ZmNBS25 enhances disease resistance in rice and arabidopsis. Frontiers in Plant Science 9: 1033. DOI:
https://doi.org/10.3389/fpls.2....
38.
Yang Y., Yang X., Dong Y., Qiu D. 2018. The Botrytis cinerea xylanase BcXyl1 modulates plant immunity. Frontiers in Microbiology: 2535. DOI:
https://doi.org/10.3389/fmicb.....
39.
Zhang L., Li W., Tao Y., Zhao S., Yao L., Cai Y., Niu Q. 2019. Overexpression of the key virulence factor 1,3–1,4-β-d-Glucanase in the endophytic bacterium Bacillus halotolerans Y6 to improve Verticillium resistance in cotton. Journal of Agricultural and Food Chemistry 67: 6828–6836. DOI:
https://doi.org/10.1021/acs.ja....
40.
Zhai K., Liang D., Li H., Jiao F., Yan B., Liu J., Lei Z., Huang L., Gong X., Wang X. 2022. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. Nature 601: 245–251. DOI:
https://doi.org/10.1038/s41586....
41.
Zhong C., Ren Y., Qi Y., Yu X., Wu X., Tian Z. 2018. PAMP-responsive ATL gene StRFP1 and its orthologue NbATL60 positively regulate Phytophthora infestans resistance in potato and Nicotiana benthamiana. Plant Science 270: 47–57. DOI:
https://doi.org/10.1016/j.plan....
42.
Zhou L., Song C., Muñoz C.Y., Kuipers O.P. 2021. Bacillus cabrialesii BH5 protects tomato plants against Botrytis cinerea by production of specific antifungal compounds. Frontiers in Microbiology 12: 707609. DOI:
https://doi.org/10.3389/fmicb.....