ORIGINAL ARTICLE
Growth of weeds and their chemical control under climate change conditions
More details
Hide details
1
Plant Protection, Faculty of Agriculture, Malatya Turgut Ozal University Malatya, Turkey
2
Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2023-11-03
Acceptance date: 2024-07-22
Online publication date: 2025-03-14
Corresponding author
Khawar Jabran
Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
HIGHLIGHTS
- Growth parameters of Avena fatua and Sinapis arvensis were increased at 26/16 °C × 800 ppm CO2
- Chenopodium was least affected by the different climate change scenarios in the study
- The herbicide quantities required to control the weeds in the study were increase with an increase in temperature and CO2 levels
KEYWORDS
TOPICS
ABSTRACT
Climate change has a great influence on weed growth and susceptibility of weeds to herbicides.
This study determined the effect of six herbicides on three weed species under
different CO2 concentrations and temperature levels. The weeds in the study were: (i) wild
oat (Avena fatua), (ii) lambsquarter (Chenopodium album), and (iii) wild mustard (Sinapis
arvensis). The herbicides used in this study were: (i) 240 g ꞏ l–1 clodinafop-propargyl, (ii)
3% mesosulfuron-methyl + 0.6% iodosulfuron-methyl sodium + 9% mefenpyr-diethyl,
(iii) 40 g ꞏ l–1 nicosulfuron, (iv) 480 g ꞏ l–1 glyphosate isopropylamine salt, (v) 75% tribenuron
methyl and (vi) 3% mesosulfuron-methyl + 0.6% iodosulfuron-methyl sodium + 9%
mefenpyr-diethyl + 300 g ꞏ l–1 bromoxynil + 300 g ꞏ l–1 MCPA. The study was carried out
in a fully automated greenhouse which could be adjusted with desired CO2 concentration
and temperature. The weeds were exposed to three different temperatures (day/night
26/16 ± 1, 29/19 ± 1 and 32/22 ± 1°C) and CO2 (400 ± 50, 600 ± 50 and 800 ± 50 ppm)
levels. A temperature of 26/16 ± 1°C plus a CO2 level of 400 ± 50 ppm was considered as
the control. Results showed that 26/16°C × 800 ppm CO2 produced the highest plant length
(65.05 cm), plant fresh weight (7.42 g) and plant dry weight (1.31 g) for A. fatua. Similarly,
for S. arvensis, the same treatment showed the highest plant length (31.63 cm), plant fresh
weight (23.99 g) and plant dry weight (1.82 g) while for C. album, different climatic conditions
did not show a significant effect on the growth of this weed. The ED50 values of herbicides
for controlling A. fatua, C. album and S. arvensis increased (112.8, 0.6 and 199.4) with
an increase in temperature and CO2 levels, respectively. It is predicted that the control of
some weeds will be difficult in the climate change that includes an increase in temperature
and carbon dioxide in the future.
ACKNOWLEDGEMENTS
The authors are grateful to Taseer Ahmad (PhD Scholar)
and BS Plant Protection (Batch 2018) students in
Malatya University for their help in this research.
RESPONSIBLE EDITOR
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (62)
1.
Ahmad-Hamdani M.S., Yu Q., Han H., Cawthray G.R., Wang S.F., Powles S.B. 2013. Herbicide resistance endowed by enhanced rates of herbicide metabolism in wild oat (Avena spp.). Weed Science 61: 55–62. DOI:
https://doi.org/10.1614/WS-D-1....
2.
Amare T. 2016. Review on impact of climate change on weed and their management. American Journal of Biology and Environmental Statistics 2 (3): 21–27. DOI: 10.11648/j.ajbes.20160203.12.
3.
Archambault D.J., Li X., Robinson D., Klein K.K. 2001. The effects of elevated CO2 and temperature on herbicide efficacy and weed/crop competition. Report Prairie Adapt Research Collaboration, 29. Available on:
https://www.parc.ca/project/th... [Accessed: 04.02.2023].
4.
Bajwa A.A., Akhter M.J., Iqbal N., Peerzada A.M., Hanif Z., Manalil S., Hashim S., Ali H.H., Kebaso L., Frimpong D., Namubiru H. 2017. Biology and management of Avena fatua and Avena ludoviciana: two noxious weed species of agro-ecosystems. Environmental Science and Pollution Research 24: 19465–19479. DOI: 10.1007/s11356-017-9810-y.
5.
Bajwa A.A., Farooq M., Al-Sadi A.M., Nawaz A., Jabran K., Siddique K.H. 2020. Impact of climate change on biology and management of wheat pests. Crop Protection 105304. DOI:
https://doi.org/10.1016/j.crop....
6.
Bajwa A.A., Nguyen T., Navie S., O’Donnell C., Adkins S. 2018. Weed seed spread and its prevention: the role of roadside wash down. Journal of Environmental Management 208: 8–14. DOI:
https://doi.org/10.1016/j.jenv....
7.
Bajwa A.A., Zulfiqar U., Sadia S., Bhowmik P., Chauhan B.S. 2019. A global perspective on the biology, impact, and management of Chenopodium album and Chenopodium murale: two troublesome agricultural and environmental weeds. Environmental Science and Pollution Research 26 (6): 5357–5371. DOI:
https://doi.org/10.1007/s11356....
8.
Beckie H.J., Francis A., Hall L.M. 2012. The biology of Canadian weeds. 27. Avena fatua L. (updated). Canadian Journal of Plant Science 92: 1329–1357. DOI: 10.4141/CJPS2012-005.
9.
Berling I., Buckley N.A., Mostafa A. 2015. 2-Methyl-4-chlorophenoxyacetic acid and bromoxynil herbicide death. Clinical Toxicology 53: 486–488. DOI:
https://doi.org/10.3109/155636....
11.
Blumenthal D.M., Kray J.A. 2014. Climate change, plant traits and invasion in natural and agricultural ecosystems. p. 62–74. In: “Invasive Species and Global Climate Change”. Vol. 4 (L. Ziska, J. Dukes eds). CABI, Oxfordshire.
12.
Carboni M., Guéguen M., Barros C., Georges D., Boulangeat I., Douzet R., Wilfried T. 2015. Simulating plant invasion dynamics in mountain ecosystems under global change scenarios. Global Change Biology 24: e289–302. DOI:
https://doi.org/10.1111/gcb.13....
13.
Chadha A., Florentine S., Javaid M., Welgama A., Turville C. 2020. Influence of elements of climate change on the growth and fecundity of Datura stramonium. Environmental Science and Pollution Research 27: 35859–35869.
14.
Datta A., Rapp R.E., Scott J.–E., Charvat L.D., Zawierucha J., Knezevic S.Z. 2013. Spring-applied saflufenacil and imazapic provided longer lasting Euphorbia esula L. control than fall applications. Crop Protection 47: 30–34.
15.
Dollinger M. 2005. Classification of herbicides according to mode of action. p. 1–8. In: “Grower’s IPM Guide for Florida Tomato and Pepper Production”. Bayer AG, Leverkusen, Germany.
16.
Duke S.O. 2018. The history and current status of glyphosate. Pest Management Science 74 (5): 1027–1034. DOI: 10.1002/ps.4652.
17.
Dukes J.S. 2000. Will the increasing atmospheric CO2 concentration affect the success of invasive species? p. 97–320. In: “Invasive Species in a Changing World” (R.J. Hobbs, ed.). Fernando N., Manalil S., Florentine S.K., Chauhan B.S., Seneweera S. 2016. Glyphosate resistance of C3 and C4 weeds under rising atmospheric CO2. Frontiers in Plant Science 7: 910. DOI:
https://doi.org/10.3389/fpls.2....
18.
Franz J.E., Mao M.K., Sikorski J.A. 1997. Glyphosate: A unique global herbicide. American Chemical Society Monograph 189. American Chemical Society, Washington, DC. Grossbard E., Atkinson D. 1985. The herbicide glyphosate. Butterworths Ltd., London.
19.
Harker K.N., O’Donovan J.T., Turkington T.K., Blackshaw R.E., Lupwayi N.Z., Smith E.G., Johnson E.N., Pageau D., Shirtliffe S.J., Gulden R.H., Rowsell J., Hall L.M., Willenborg C.J. 2016. Diverse rotations and optimal cultural practices control wild oat (Avena fatua). Weed Science 64: 170–180. DOI:
https://doi.org/10.1614/WS-D-1....
20.
Hellmann J.J., Byers J.E., Bierwagen B.G., Dukes J.S. 2008. Five potential consequences of climate change for invasive species. Conservation Biology 22 (3): 534–543. DOI: 10.1111/j.1523-1739.2008.00951.x.
21.
Holm L.G., Plucknett D.L., Pancho J.V., Herberger J.P. 1977. The world’s worst weeds. Distribution and biology. University of Hawaii, Honolulu, 609 pp.
22.
Howden S.M., Soussana J.F., Tubiello F.N., Chhetri N., Dunlop M., Meinke H. 2007. Adapting agriculture to climate change. Proceedings of the National Academy of Sciences of the United States of America 104: 19691–19696.
23.
IPCC. 2007. Climate change 2007. The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
24.
IPCC. 2014. Summary for policy makers. In: Climate Change 2014: Impact, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (C.B. Field et al., eds), Cambridge University Press, Cambridge.
25.
Jabran K. 2016. Determination of the growth and herbicide sensitivity of some invasive plants under different carbon dioxide, temperature, and nitrogen conditions. Doctoral Thesis,.
26.
Adnan Menderes University, Aydin, Türkiye. Jabran K., Doğan, M.N. 2018. High carbon dioxide concentration and elevated temperature impact the growth of weeds but do not change the efficacy of glyphosate. Pest Management Science 74 (3): 766–771. DOI: 10.1002/ps.4788.
27.
Jabran K., Doğan M.N. 2020. Elevated CO2, temperature, and nitrogen levels impact growth and development of invasive weeds in the Mediterranean region. Journal of the Science of Food and Agriculture 100 (13): 4893–4900. DOI:
https://doi.org/10.1002/jsfa.1....
28.
Jabran K., Farooq M., Hussain M., Ali M. 2010. Wild oat (Avena fatua) and canary grass (Phalaris minor) management through allelopathy. Journal of Plant Protection Research 50: 41–44. DOI: 10.2478/v10045-010-0007-3.
29.
Jabran K., Mahmood K., Melander B., Bajwa A.A., Kudsk P. 2017. Weed dynamics and management in wheat. Advances in Agronomy 145: 97–166. DOI:
https://doi.org/10.1016/bs.agr....
30.
Jiménez M.D., de Torre R., Mola I., Casado M.A., Balaguer L. 2018. Local plant responses to global problems: Dactylis glomerata responses to different traffic pollutants on roadsides. Journal of Environmental Management 212: 440–449. DOI:
https://doi.org/10.1016/j.jenv....
31.
Knezevic S.Z., Streibig J.C., Ritz C. 2007. Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technology 21: 840–848.
32.
Luzuriaga A.L., Escudero A., Pérez‐García F. 2006. Environmental maternal effects on seed morphology and germination in Sinapis arvensis (Cruciferae). Weed Research 46: 163–174. DOI:
https://doi.org/10.1111/j.1365....
33.
Mahajan G., Loura D., Raymont K., Chauhan B.S. 2020. Influence of soil moisture levels on the growth and reproductive behavior of Avena fatua and Avena ludoviciana. PLoS One 15: e0234648. DOI:
https://doi.org/10.1371/journa....
34.
Manea A., Leishman M.R., Downey P.O. 2011. Exotic C4 grasses have increased tolerance to glyphosate under elevated carbon dioxide. Weed Science 59: 28–36. DOI:
https://doi.org/10.1614/WS-D-1....
35.
Marble S.C., Prior S.A., Runion G.B., Torbert H.A. 2015. Control of yellow and purple nutsedge in elevated CO2 environments with glyphosate and halosulfuron. Frontiers in Plant Science 6. DOI:
https://doi.org/10.3389/fpls.2....
36.
Matzrafi M., Brunharo C., Tehranchian P., Hanson B.D., Jasieniuk M. 2019. Increased temperatures and elevated CO2 levels reduce the sensitivity of Conyza canadensis and Chenopodium album to glyphosate. Scientific Reports 9 (1): 1–11. DOI:
https://doi.org/10.1038/s41598....
37.
Mgidi T.N., Le Maitre D.C., Schonegevel L., Nel J.L., Rouget M., Richardson D.M. 2007. Alien plant invasions-incorporating emerging invaders in regional prioritization: a pragmatic approach for Southern Africa. Journal of Environmental Management 84: 173–187. DOI:
https://doi.org/10.1016/j.jenv....
38.
Misra V., Shrivastava A.K., Mall A.K., Solomon S., Singh A.K., Ansari M.I. 2019. Can sugarcane cope with increasing atmospheric CO2 concentration? Australian Journal of Crop Science 13: 780–784.
39.
Mohseni-Moghadam M., Schroeder J., Heerema R., Ashigh J. 2013. Resistance to glyphosate in Palmer amaranth (Amaranthus palmeri) populations from New Mexico pecan orchards. Weed Technology 27: 85–91. DOI:
https://doi.org/10.1614/WT-D-1....
40.
Norsworthy J.K., Griffith G.M., Scott R.C., Smith K.L., Oliver L.R. 2008. Confirmation and control of glyphosateresistant Palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technology 22: 108–113. DOI:
https://doi.org/10.1614/WT-07-....
41.
Oerke E.C. 2006. Crop losses to pests. Journal of Agricultural Science 144 (1): 31–43. DOI: 10.1017/S0021859605005708.
42.
Prentice I.C., Farquhar G.D., Fasham M.JR., Goulden M., Heimann M., Jaramillo V.J., Kheshgi H.S., LeQuéré C., Scholes R.J., Wallace DWR. 2001. The carbon cycle and atmospheric carbon dioxide. Cambridge University Press.
43.
Qasem J.R. 2011. Herbicides applications: problems and considerations. p. 651. In: “Herbicides and Environment”. IntechOpen.
44.
RBKÜ. 2009. Ruhsatlı Bitki Koruma Ürünleri T.C. Tarım ve Köyişleri Bakanlığı Koruma ve Kontrol Genel Müdürlüğü.
45.
Ankara, Türkiye. Richmond M.E. 2018. Glyphosate: a review of its global use, environmental impact, and potential health effects on humans and other species. Journal of Environmental Studies and Sciences 8 (4): 416–434. DOI:
https://doi.org/10.1007/s13412....
46.
Roger E., Duursma D.E., Downey P.O., Gallagher R.V., Hughes L., Steel J., Johnson S.B., Leishman M.R. 2015. A tool to assess potential for alien plant establishment and expansion under climate change. Journal of Environmental Management 159: 121–127. DOI:
https://doi.org/10.1016/j.jenv....
47.
Rustad L.E., Campbell J., Marion G., Norby R., Mitchell M., Hartley A., Gurevitch J. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126 (4): 543–562. DOI:
https://doi.org/10.1007/s00442....
48.
Seebens H., Essl F., Dawson W., Fuentes N., Moser D., Pergl J., Pyšek P., Kleunen M., Weber E., Winter M., Blasius B. 2015. Global trade will accelerate plant invasions in emerging economies under climate change. Global Change Biology 21: 4128–4140. DOI: 10.1111/gcb.13021.
49.
Sharma M., Born W.V. 1983. Crop competition aids efficacy of wild oat herbicides. Canadian Journal of Plant Science 63 (2): 503–507.
50.
Singer A., Travis J.M.J., Johst K. 2013. Interspecific interactions affect species and community responses to climate shifts. Oikos 122: 358–366. DOI: 10.1111/j.1600-0706.2012.20465.x.
51.
Sun Y., Ding J., Siemann E., Keller S.R. 2020. Biocontrol of invasive weeds under climate change: progress, challenges, and management implications. Current Opinion in Insect Science 38: 72–78.
52.
Sutherland W.J., Barnard P., Broad S., Clout M., Connor B., Côté I.M., Dicks L.V., Doran H., Entwistle A.C., Fleishman E., Fox M., Gaston K.J., Gibbons D.W., Jiang Z., Keim B., Lickorish F.A., Markillie P., Monk K.A., Pearce-Higgins J.W., Peck L.S., Pretty J., Spalding M.D., Tonneijck H., Wintle B.C., Ockendon N. 2017. A 2017 horizon scan of emerging issues for global conservation and biological diversity. Trends in Ecology and Evolution 32 (1): 31–40. DOI:
https://doi.org/10.1016/j.tree....
53.
Tørresen K.S., Fykse H., Rafoss T., Gerowitt B. 2020. Autumn growth of three perennial weeds at high latitude benefits from climate change. Global Change Biology 26: 2561–2572.
54.
Ulloa S.M., Datta A., Bruening C., Neilson B., Miller J., Gogos G., Knezevic S.Z. 2011. Maize response to broadcast flaming at different growth stages: effects on growth, yield, and yield components. European Journal of Agronomy 34: 10–19.
55.
Valerio M., Tomecek M., Lovelli S., Ziska L. 2013. Assessing the impact of increasing carbon dioxide and temperature on crop-weed interactions for tomato and a C3 and C4 weed species. European Journal of Agronomy 50: 60–65. DOI:
https://doi.org/10.1016/j.eja.....
56.
Weed Science Society of America (WSSA). 1994. Herbicide Handbook, 7th edition. Weed Science Society of America, Lawrence, Kansas.
57.
Zhang T.J., Feng L., Tian X.S., Peng C.L., Yang C.H., Yue M.F. 2015. Differential response of two biotypes of goosegrass (Eleusine indica) with different sensitivities to glyphosate to elevated CO2 concentrations. International Journal of Agricultural Biology 17: 969–982.
58.
Ziska L.H., Blumenthal D.M., Franks S.J. 2019. Understanding the nexus of rising CO2, climate change, and evolution in weed biology. Invasive Plant Science and Management 12: 79–88.
59.
Ziska L.H., Faulkner S., Lydon J. 2004. Changes in biomass and root: shoot ratio of field-grown Canada thistle (Cirsium arvense), a noxious, invasive weed, with elevated CO2: implications for control with glyphosate. Weed Science 52: 584–588. DOI:
https://doi.org/10.1614/WS-03-....
60.
Ziska L.H., McConnell L.L. 2015. Climate change, carbon dioxide, and pest biology: monitor, mitigate, manage. Journal of Agricultural and Food Chemistry 64: 6–12. DOI: 10.1021/jf506101h.
61.
Ziska L.H., Teasdale J.R. 2000. Sustained growth and increased tolerance to glyphosate observed in a C3 perennial weed, quackgrass (Elytrigia repens), grown at elevated carbon dioxide. Functional Plant Biology 27: 159–166.
62.
Ziska L.H., Teasdale J.R., Bunce J.A. 1999. Future atmospheric carbon dioxide may increase tolerance to glyphosate. Weed Science 47: 608–615.