ORIGINAL ARTICLE
Genetic polymorphism of Fusarium culmorum isolates originating from roots and stem bases of barley
 
 
More details
Hide details
1
Poznań University of Life Sciences, Department of Phytopathology Dąbrowskiego 159, 60-594 Poznań, Poland
 
2
University of Technology and Life Sciences, Department of Phytopathology Kordeckiego 20, 85-225 Bydgoszcz, Poland
 
 
Corresponding author
Lidia Irzykowska
Poznań University of Life Sciences, Department of Phytopathology Dąbrowskiego 159, 60-594 Poznań, Poland
 
 
Journal of Plant Protection Research 2008;48(3):303-312
 
KEYWORDS
TOPICS
ABSTRACT
Fusarium culmorum is an etiologic agent of barley foot rot. The identification and variability evaluation of F. culmorum isolates, originating from roots and stem bases of spring barley, was carried out using molecular methods. Species-specific SCAR primers were successfully applied to identify F. culmorum isolates from northern and south-eastern Poland. To determine DNA polymorphism on intraspecies level RAPD technique was used. Twenty three RAPD markers revealed DNA polymorphism suitable to assess genetic variation among isolates examined. Cluster analysis of RAPD data identified a few groups of isolates. In some cases grouping of isolates was correlated with their geographic origin.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (32)
1.
Amoah B.K., Rezanoor H.N., Nicholson P., MacDonald M.V. 1995. Variation in the Fusarium section Liseola: pathogenicity and genetic studies of isolates of Fusarium moniliforme Sheldon from different hosts in Ghana. Plant Pathol. 44: 563–572.
 
2.
Assigbetse K.B., Fernandez D., Boubios M.P., Geiger J.P. 1994. Differentiation of Fusarium oxysporum f. sp. vasinfectum races on cotton by random amplified polymorphic DNA (RAPD) analysis. Phytopathology 84: 622–626.
 
3.
Baturo A. 2007. Effect of organic system on spring barley stem base health in comparison with integrated and conventional farming. J. Plant Protection Res. 47 (2): 167–178.
 
4.
Bottalico A., Perrone G. 2002. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur. J. Plant Pathol. 108: 611–624.
 
5.
Brennan J.M., Egan D., Cooke B.M., Doohan F.M. 2005. Effect of temperature on head blight of wheat caused by Fusarium culmorum and F. graminearum. Plant Pathol. 54: 156–160.
 
6.
Chandler E.A., Simpson D.R., Thomsett M.A., Nicholson P. 2003. Development of PCR assays to Tri7 and Tri13 trichotecene biosynthetic genes, and characterisation of chemotypes od Fusarium graminearum and Fusarium cerealis. Physiol. Mol. Plant Pathol. 62: 355–367.
 
7.
Chełkowski J., Bateman G.L., Mirocha C.H.J. 1999. Identification of toxygenic Fusarium species using PCR assays. J. Phytopathol. 147: 307–311.
 
8.
Edwards S.G., O’Callaghan J., Dobson A.D.W. 2002. PCR-based detection and quantification of mycotoxigenic fungi. Mycol. Res. 106 (9): 1005–1025.
 
9.
Irzykowska L. 2006. Markery molekularne w diagnostyce chorób podstawy źdźbła i korzeni zbóż. (Molecular markers in diagnostics of cereal foot and root diseases). Post. Nauk Rol. 6: 31–40.
 
10.
Irzykowska L. 2007. Molecular detection and comparison of Gaeumannomyces graminis var. tritici isolates originating from wheat and rye. J. Plant Protection Res. 47 (3): 299–308.
 
11.
Irzykowska L. Irzykowski W., Jarosz A., Gołębniak B. 2005a. Association of Phytophthora citricola with leather rot disease of strawberry. J. Phytopathol. 153 (11): 680–685.
 
12.
Irzykowska L., Żółtańska E., Bocianowski J. 2005b. Use of molecular and conventional techniques to identify and analyze genetic variability of Rhizoctonia spp. isolates. Acta Agrobot. 58 (2): 19–32.
 
13.
Jurado M. Vázquez C., Patiño B., González-Jaén M.T. 2005. PCR detection assays for the trichothecene-producing species Fusarium graminearum, Fusarium culmorum, Fusarium poe, Fusarium equiseti and Fusarium sporotrichoides. Syst. Appl. Microbiol. 28: 562–568.
 
14.
Kerényi Z. Moretti A., Waalwijk C., Olah B., Hornok L. 2004. Mating type sequences in asexually reproducing Fusarium species. Appl. Environ. Microb. 70 (8): 4419–4423.
 
15.
Khalil M.S., Abdel-Sattar M.A., Aly I.N., Abd-Elsalam K.A., Verreet J.A. 2003. Genetic affinities of Fusarium spp. and their correlation with origin and pathogenicity. Afr. J. Biotech. 2: 109–113.
 
16.
Kulik T., Fordoński G., Pszczółkowska A., Płodzień K., Łapiński M. 2004. Development of PCR assay based on ITS2 rDNA polymorphism for the detection and differentiation of Fusarium sporotrichoides. FEMS Microbiol. Lett. 239: 181–186.
 
17.
Kwaśna H., Chełkowski J., Zajkowski P. 1991. Flora Polska. Vol. 22. Grzyby (Mycota). Instytut Botaniki PAN, Warszawa, 136 pp.
 
18.
Leslie J.F., Summerell B.A. 2006. Fusarium culmorum (W.G. Smith) Saccardo. p. 158–159. In: “The Fusarium Laboratory Manual” (J.F. Leslie, B.A. Summerell, eds.). 1 ed. Blackwell Publishing Professional.
 
19.
Logrieco A., Bottalico A, Mulé G., Moretti A., Perrone G. 2003. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. Europ. J. Plant Pathol. 109: 645–667.
 
20.
McDonald B.A., Miles J., Nelson L.R., Pettway R.E. 1994. Genetic variability in nuclear DNA in field populations of Stagonospora nodorum. Phytopathology 84: 250–255.
 
21.
Möller E.M., Chełkowski J., Geiger H.H. 1999. Species-specific PCR assays for the fungal pathogens Fusarium moniliforme and Fusarium subglutinans and their application to diagnose maize ear rot disease. J. Phytopathol. 147: 497–508.
 
22.
Nei M., Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Nat. Acad. Sci. USA 76: 5269–5273.
 
23.
Nicholson P. 2004. Rapid detection of mycotoxigenic fungi in plants. p. 111–152. In: “Mycotoxins in Food: Detection and Control” (N. Magan, ed.). Woodhead Publishing, Limited, Cambridge.
 
24.
Nicholson P., Simpson D.R., Weston G., Rezanoor H.N., Lees A.K., Parry D.W., Joyce D. 1998. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol. Mol. Plant Pathol. 53: 17–37.
 
25.
Nicolaisen M., Justesen A.F., Thrane U., Skouboe P., Holmstrøm K. 2005. An oligonucleotide miccroarray for the identification and differentiation of trichothecene producing and non-producing Fusarium species occurring on cereal grain. J. Microbiol. Meth. 62: 57–69.
 
26.
Ouellet T., Seifert K.A. 1993. Genetic characterization of Fusarium graminearum strains using RAPD and PCR amplification. Phytopathology 83 (9): 1003–1007.
 
27.
Peltonen S., Jalli M., Kammiovirta K., Karjalainen R. 1996. Genetic variation in Drechslera teres populations as indicated by RAPD markers. Ann. Appl. Biol. 128: 465–477.
 
28.
Schilling A.G., Möller E.M, Geiger H.H. 1996. Polymerase chain reaction-based assays for speciesspecific detection of Fusarium culmorum, F. graminearum and F. avenaceum. Phytopathology 86 (5): 515–522.
 
29.
Sun G., Bond M., Nass H., Martin R., Dong Z. 2003. RAPD polymorphisms in spring wheat cultivars and lines with different level of Fusarium resistance. Theor. Appl. Genet. 106: 1059–1067.
 
30.
Van de Peer Y., de Wachter R. 1994. TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Applic. Biosci. 10: 569–570.
 
31.
Weber Z., Irzykowska L., Bocianowski J. 2005. Analysis of mycelial growth rates and RAPD-PCR profiles in a population of Gaeumannomyces graminis var. tritici originating from wheat plants grown from fungicide-treated seed. J. Phytopathol. 153: 318–324.
 
32.
Williams J.G., Kubelik L.R., Livak K.J., Rafalski J.A., Tigney S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531–6535.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top