ORIGINAL ARTICLE
Failure control of Plutella xylostella (Lepidoptera: Plutellidae) and selectivity of their natural enemies to different insecticides
 
More details
Hide details
1
Department of Agronomy, Federal University of Sergipe, 49100-000, Sergipe, Brazil
 
2
Department of Entomology, Federal University of Viçosa, 36570-900, Viçosa, Brazil
 
3
Technology Center of Paulínia, DuPont of Brazil S.A., 13140-000, Paulinia, Brazil
 
4
Department of Agriculture, Federal Institute of Education, Science and Technology Baiano, 45.985-970, Brazil
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2017-11-17
 
 
Acceptance date: 2018-02-27
 
 
Corresponding author
Julio Claudio Martins   

Department of Agriculture, Federal Institute of Education, Science and Technology Baiano, 45.985-970, Brazil
 
 
Journal of Plant Protection Research 2018;58(2):161-167
 
KEYWORDS
TOPICS
ABSTRACT
Control failure of pests and selectivity of insecticides to beneficial arthropods are key data for the implementation of IPM program. In the context, this study aimed to assess the control failure likelihood of Plutella xylostella and the physiological selectivity active ingredients to parasitoid Oomyzus sokolowskii (Hymenoptera: Eulophidae) and to predators Polybia scutellaris (Hymenoptera: Vespidae) and Lasiochilus sp. (Hemiptera: Anthocoridae). In bioassays, larvae of P. xylostella and adults of O. sokolowskii, P. scutellaris and Lasiochilus sp. were used. Concentration-mortality curves of six insecticides for P. xylostella were established. These curves were used to estimate the mortality of P. xylostella in recommended concentration, in order to check a control failure of insecticides to this pest. Furthermore, the lethal concentration for 90% of populations (LC90) and the half of LC90 were used in bioassays with the natural enemies to determinate the selectivity of these insects to insecticides. All tested insecticides showed control failure to P. xylostella, indicated by high LC90 and low estimated mortalities (less than 80%). The cartap insecticide was selective in half of LC90 to Lasiochilus sp. and moderately selective in LC90 and the half of LC90, to Lasiochilus sp. and P. scutellaris, respectively. Deltamethrin was moderately selective in the half of LC90 to predator Lasiochilus sp. Cartap, carbaryl, and deltamethrin reduced the mortality of Lasiochilus sp. in the half LC90. The results also showed that the insecticides methamidophos, carbaryl, parathion methyl, and permethrin were not selective to any of the tested natural enemies. The role of insecticides in IPM systems of Brassica crops is discussed based on their control failures to P. xylostella and selectivity to their natural enemies.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (34)
1.
Abbott W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18 (2): 265–267. DOI: https://doi.org/10.1093/jee/18....
 
2.
Bacci L., Crespo A.L.B., Galvan T.L., Pereira, E.J.G., Picanço M.C., Silva G.A., Chediak M. 2007. Toxicity of insecticides to the sweetpotato whitefly (Homoptera: Aleyrodidae) and its natural enemies. Pest Management Science 63 (7): 699–706. DOI: 10.1002/ps.1393.
 
3.
Bacci L., Pereira E.J.G., Fernandes F.L., Picanço M.C., Crespo A.L.B., Campos M.R. 2006. Seletividade fisiológica de inseticidas a vespas predadoras (Hymenoptera: Vespidae) de Leucoptera coffeella (Lepidoptera: Lyonetiidae) [Physiological selectivity of insecticides to predatory wasps (Hymenoptera: Vespidae) of Leucoptera coffeella (Lepidoptera: Lyonetiidae)]. BioAssay 10: 1–7. DOI: http://dx.doi.org/10.14295/BA.....
 
4.
Barros R., Albert Junior I.B., Oliveira A.J., Souza A.C.F., Lopes V. 1993. Controle químico da traça-das-crucíferas, Plutella xylostella (L.) (Lepidoptera: Plutellidae) em repolho [Chemical control of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) on cabbage]. Anais da Sociedade Entomológica do Brasil 22 (3): 463–469.
 
5.
Bautista M.A.M., Miyata T., Miura K., Tanaka T. 2009. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochemistry and Molecular Biology 39 (1): 38–46. DOI: 10.1016/j.ibmb.2008.09.005.
 
6.
Bopape M.J., Nofemela R.S., Mosiane M.S., Modise D.M. 2014. Effects of a selective and a broad-spectrum insecticide on parasitism rates of Plutella xylostella (L.) (Lepidoptera: Plutellidae) and species richness of its primary parasitoids. African Entomology 22 (1): 115–126. DOI: https://doi.org/10.4001/003.02....
 
7.
Brattsten L.B., Holyoke Jr. C.W., Leeper J.R., Raffa K.F. 1986. Insecticide resistance: challenge to pest management and basic research. Science 231 (4743): 1255–1260. DOI: 10.1126/science.231.4743.1255.
 
8.
Castelo Branco M., Amaral P.S.T. 2002. Inseticidas para controle da traça-das-crucíferas: como os agricultores os utilizam no Distrito Federal? [Insecticides for control of the diamondback moth: How do farmers use them in the Distrito Federal?]. Horticultura Brasileira 20 (3): 410–415. DOI: 10.1590/S0102–05362002000300002.
 
9.
Castelo Branco M., Guimarães A.L. 1990. Controle da traçadas-crucíferas e repolho. [Control of diamondback moth and cabbage]. Horticultura Brasileira 8 (1): 24–25.
 
10.
Cordero R.J., Bloomquist J.R., Kuhar T.P. 2007. Susceptibility of two diamondback moth parasitoids, Diadegma insulare (Cresson) (Hymenoptera: Ichneumonidae) and Oomyzus sokolowskii (Kurdjumov) (Hymenoptera: Eulophidae), to selected commercial insecticides. Biological Control 42 (1): 48–54. DOI: https://doi.org/10.1016/j.bioc....
 
11.
Eigenbrode S.D., Castagnola T., Roux M.B., Steljes L. 1996. Mobility of three generalist predators is greater on cabbage with glossy leaf wax than on cabbage with a waxbloom. Entomologia Experimentalis et Applicata 81 (3): 335–343. DOI: 10.1046/j.1570–7458.1996.00104.x.
 
12.
França F.H., Medeiros M.A. 2017. Impacto da combinação de inseticidas sobre a produção de repolho e parasitóides associados com a traça-das-crucíferas [Impact of combination of insecticides on the production of cabbage and parasitoids associated with the diamondback moth]. Horticultura Brasileira 16 (2): 132–135. DOI: http://dx.doi.org/10.1590/S010....
 
13.
Furlong M.J., Wright D.J., Dosdall L.M. 2013. Diamondback moth ecology and management: Problems, progress, and prospects. Annual Review of Entomology 58: 517–541. DOI: https://doi.org/10.1146/annure....
 
14.
Godin C., Boivin G. 1998. Seasonal occurence of lepidopterous pests of cruciferous crops in Southwestern Quebec in relation to degree-day accumulations. The Canadian Entomologist 130 (2): 173–185. DOI: https://doi.org/10.4039/Ent130....
 
15.
Guedes R.N.C. 1999. Resistência de insetos a inseticidas. p. 101–107. In: “Manejo Integrado de doenças e pragas” [“Resistance of Insects to Insecticides”]. (L. Zambolim, ed.). Editora UFV. Viçosa, Brazil, 146 pp.
 
16.
Halappa B., Patil R.K. 2016. Detoxifying enzyme studies on cotton leafhopper, Amrasca biguttula biguttula (Ishida), resistance to neonicotinoid insecticides in field populations in Karnataka, India. Journal of Plant Protection Research 56 (4): 346–352. DOI: https://doi.org/10.1515/jppr-2....
 
17.
Labou B., Brévault T., Bordat D., Diarra K. 2016. Determinants of parasitoid assemblages of the diamondback moth, Plutella xylostella, in cabbage farmer fields in Senegal. Crop Protection 89: 6–11. DOI: https://doi.org/10.1016/j.crop....
 
18.
Leite G.L.D., Picanço M., Guedes R.N.C., Gusmão M.R. 1998. Selectivity of insecticides with and without mineral oil to Brachygastra lecheguana (Hymenoptera: Vespidae): a predator of Tuta absoluta (Lepidoptera: Gelechiidae). Ceiba 39 (1): 3–6.
 
19.
Leng X.F., Xiao D.Q. 1995. Effect of deltamethrin on protein phosphorylation of housefly brain synaptosomes. Pesticide Science 44 (1): 88–89. DOI: 10.1002/ps.2780440117.
 
20.
Naranjo S.E. 2001. Conservation and evaluation of natural enemies in IPM systems for Bemisia tabaci. Crop Protection 20 (9): 835–852. DOI: https://doi.org/10.1016/S0261–....
 
21.
Pimentel D. 2005. Environmental and economic costs of the application of pesticides primarily in the United States? Environment, Development and Sustainability 7 (2): 229–252. DOI: http://hdl.handle.net/10.1007/....
 
22.
Rahmani S., Bandani A.R. 2016. Pirimicarb, an aphid selective insecticide, adversely affects demographic parameters of the aphid predator Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae). Journal of Plant Protection Research 56 (4): 353–363. DOI: https://doi.org/10.1515/jppr–2....
 
23.
SAS. 2001. SAS Institute Inc., Cary, North Carolina, USA, 2001.
 
24.
Silver A.R.J., van Emden H.F., Battersby M. 1995. A biochemical mechanism of resistance to pirimicarb in two glasshouse clones of Aphis gossypii. Pesticide Science 43 (1): 21–29. DOI: 10.1002/ps.2780430104.
 
25.
Stanley J., Chandrasekaran S., Preetha G., Kuttalam S., Jasmine R.S. 2016. Selective toxicity of diafenthiuron to non-target organisms: honey bees, coccinellids, chelonus, earthworms, silkworms and fish. Journal of Plant Protection Research 56 (1): 1–5. DOI: https://doi.org/10.1515/jppr-2....
 
26.
Talekar N.S., Shelton A.M. 1993. Biology, ecology and management of the diamondback moth. Annual Review of Entomology 38: 273–301. DOI: https://doi.org/10.1146/annure....
 
27.
Vastrad A.S., Lingappa S., Basavangoud K. 2004. Monitoring insecticide resistance in diamondback moth, Plutella xylostella (L.) in Karnataka, India. Resistant Pest Management Newsletter 13 (2): 22–24.
 
28.
Wang X.G., Liu S.S., Guo S.J., Lin W.C. 1999. Effects of host stages and temperature on population parameters of Oomyzus sokolowskii, a larval-pupal parasitoid of Plutella xylostella. BioControl 44 (4): 391–402. DOI: 10.1023/A:1009912420598.
 
29.
Williamson M.S. 1998. Toxicological, electrophysiological, and molecular characterisation of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.). Pesticide Biochemestry and Physiology 59 (3): 169–182. DOI: https://doi.org/10.1006/pest.1....
 
30.
Young L.J., Young J.H. 1998. Statistical ecology: a population perspective. 1st ed. Kluwer Academic, Boston, USA, 565 pp.
 
31.
Yu S.J. 1988. Selectivity of insecticides to the spined soldier bug (Heteroptera: Pentatomidae) and its lepidopterous prey. Journal of Economic Entomology 81 (1): 119–122. DOI: https://doi.org/10.1093/jee/81....
 
32.
Zalucki M.P., Shabbir A., Silva R., Adamson D., Shu-Sheng L., Furlong M.J. 2012. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): Just how longis a piece of string? Journal of Economic Entomology 105 (4): 1115–1129. DOI: https://doi.org/10.1603/EC1210....
 
33.
Zhao W.Z., Feng G.L., Zhao Y., Sun Y.Q. 1992. An important resistance mechanism of housefly to DDT and pyrethroids-CNS insensitivity. Acta Entomologica Sinica 35 (4): 393–398. URL: http://www.insect.org.cn/EN/Y1....
 
34.
Zu-Hua S., Qin-Bao L., Xin L., Shu-Sheng L. 2003. Interspecific competition between Diadegma semiclausum and Oomyzus sokolowskii, two parasitoids of Plutella xylostella. Chinese Journal of Biological Control 19: 97–102.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top