ORIGINAL ARTICLE
 
HIGHLIGHTS
  • Surfactin reduced the feeding of the genus Oulema on spring wheat and spring barley.
  • Surfactin is stable in different range of temperature, salinity or pH of environment.
  • The insects laid fewer eggs on plants treated with the surfactin.
  • Surfactin can contribute positively to the biological control of the genus Oulema.
KEYWORDS
TOPICS
ABSTRACT
The study objective was to investigate the influence of microbiologically obtained surfactin on the feeding and development of Oulema melanopus and Oulema gallaeciana on spring wheat (Triticum aestivum) and spring barley (Hordeum vulgare). The purified bioproduct was applied to the leaves of cereal plants at a concentration of 660.5 mg · l–1. The tests were conducted as a no-choice test and a choice test. Pest feeding and egg-laying were analyzed. The addition of surfactin to the food reduced the feeding of female and male tested insects as compared to controls. Male pests caused less damage to plants than females. Insect feeding on surfactin-treated plants was low in the first days of the experiment. The tested insects laid fewer eggs on plants treated with the biosurfactant. In terms of food selection, both female and male Oulema spp. were much more likely to choose food to which surfactin had not been applied. It can thus be concluded that surfactin can contribute positively to the biological control of beetles of the genus Oulema under natural conditions. However, further research is needed to better understand the mechanisms by which analogues of this compound limit the development of this cereal pest in its natural environment.
RESPONSIBLE EDITOR
Chetan Kewsani
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (29)
1.
Abd El-Salam A.M.E., Nemat A.M., Magdy A. 2011. Potency of Bacillus thuringiensis and Bacillus subtilis against the cotton leafworm, Spodoptera littoralis (Bosid.) larvae. Archives of Phytopathology and Plant Protection 44: 204–215. DOI: https://doi.org/10.1080/032354....
 
2.
Chakrabarty S., Jin M., Wu C., Chakraborty P., Xiao Y. 2020. Bacillus thuringiensis vegetative insecticidal protein family Vip3A and mode of action against pest Lepidoptera. Pest Management Science 76: 1612‒1617. DOI: https://doi.org/10.1002/ps.580....
 
3.
Chen W-C., Juang R.S., Wei Y.H. 2015. Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochemical Engineering Journal 103: 158‒169. DOI: https://doi.org/10.1016/j.bej.....
 
4.
Clement S.L., Hu J., Stewart A.V., Wang B., Elberson L.R. 2011. Detrimental and neutral effects of a wild grass-fungal endophyte symbiotum on insect preference and performance. Journal of Insect Science 11: 1–13. DOI: https://doi.org/10.1673/031.01....
 
5.
Császár O., Tóth F., Lajos K. 2021. Estimation of the expected maximal defoliation and yield loss caused by cereal leaf beetle (Oulema melanopus L.) larvae in winter wheat (Triticum aestivum L.). Crop Protection 145: 105644. DOI: https://doi.org/10.1016/j.crop....
 
6.
Denoirjean T., Ameline A., Couty A., Dubois F., Coutte F., Doury G. 2022. Effects of surfactins, Bacillus lipopeptides, on the behavior of an aphid and host selection by its parasitoid. Pest Management Science 78: 929–937. DOI: https://doi.org/10.1002/ps.670....
 
7.
Geetha I., Manonmani A.M., Prabakaran G. 2011. Bacillus amyloliquefaciens: a mosquitocidal bacterium from mangrove forests of Andaman & Nicobar islands, India. Acta Tropica 120: 155‒159. DOI: https://doi.org/10.1016/j.acta....
 
8.
Geetha I., Paily K.P., Manonmani A.M. 2012. Mosquito adulticidal activity of a biosurfactant produced by Bacillus subtilis subsp. subtilis. Pest Management Science 68: 1447‒1450. DOI: https://doi.org/10.1002/ps.332....
 
9.
Ghribi D., Abdelkefi-Mesrati L., Boukedi H., Elleuch M., Ellouze-Chaabouni S., Tounsi S. 2012a. The impact of the Bacillus subtilis SPB1 biosurfactant on the midgut histology of Spodoptera littoralis (Lepidoptera: Noctuidae) and determination of its putative receptor. Journal of Invertebrate Pathology 109: 183‒186. DOI: https://doi.org/10.1016/j.jip.....
 
10.
Ghribi D., Elleuch M., Abdelkefi L., Ellouze-Chaabouni S. 2012b. Evaluation of larvicidal potency of Bacillus subtilis SPB1 biosurfactant against Ephestia kuehniella (Lepidoptera: Pyralidae) larvae and influence of abiotic factors on its insecticidal activity. Journal of Stored Products Research 48: 68‒72. DOI: https://doi.org/10.1016/j.jspr....
 
11.
Ghribi D., Mnif I., Boukedi H., Kammoun R., Ellouze-Chaabouni S. 2011. Statistical optimization of low-cost medium for economical production of Bacillus subtilis biosurfactant, a biocontrol agent for the olive moth Prays oleae. African Journal of Microbiology Research 5: 4927‒4936. DOI: https://doi.org/10.5897/AJMR11....
 
12.
Gurjar J., Sengupta B. 2015. Production of surfactin from rice mill polishing residue by submerged fermentation using Bacillus subtilis MTCC 2423. Bioresource Technology 189: 243‒249. DOI: https://doi.org/10.1016/j.bior....
 
13.
Hsieh F.C., Li M.C., Lin T.C. 2004. Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Current Microbiology 49: 186. DOI: https://doi.org/10.1007/s00284....
 
14.
Janek T., Gudiña E.J., Połomska X., Biniarz P., Jama D., Rodrigues L.R., Rymowicz W., Lazar Z. 2021. Sustainable surfactin production by Bacillus subtilis using crude glycerol from different wastes. Molecules 26: 3488. DOI: https:// doi.org/10.3390/molecules26123488.
 
15.
Kiesewalter H.T., Lozano-Andradea C.N., Wibowob M., Strubec M.L., Marótid G., Snydere D., Sparhold J.T., Larsen T.O., Cooper V.S., Weber T. 2021. Genomic and chemical diversity of Bacillus subtilis secondary metabolites against plant pathogenic fungi. mSystems 6 (1): e00770-20. DOI: https://doi.org/10.1128/mSyste....
 
16.
Koim-Puchowska B., Kłosowski G., Dróżdż-Afelt J.M., Mikulski D., Zielińska A. 2021. Influence of the medium composition and the culture conditions on surfactin biosynthesis by a native Bacillus subtilis natto BS19 strain. Molecules 26 (10): 2985. DOI: https://doi.org/10.3390/molecu....
 
17.
Koim-Puchowska B., Kłosowski G., Mikulski D., Menka A. 2019. Evaluation of various methods of selection of B. subtilis strains capable of secreting surfaceactive compounds. PLoS ONE 12;14 (11): e0225108. DOI: https://doi.org/10.1371/journa....
 
18.
Lamparski R., Kotwica K., Modnicki D., Balcerek M., Koim-Puchowska B. 2021. The effect of proecological procedures and plant injury on the content of free phenolic acids in winter wheat and on the feeding and development of Oulema melanopus. Arthropod-Plant Interactions 15: 937–947. DOI: https://doi.org/10.1007/s11829....
 
19.
Lemanowicz J., Bartkowiak A., Lamparski R., Wojewódzki P., Pobereżny J., Wszelaczyńska E., Szczepanek M. 2020. Physicochemical and enzymatic soil properties influenced by cropping of primary wheat (Triticum sphaerococcum and Triticum persicum) under organic and conventional farming systems. Agronomy 10: 1652. DOI: https://doi.org/10.3390/agrono....
 
20.
Liu J., Li W., Zhu X., Zhao H., Lu Y., Zhang C., Lu Z. 2019. Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Applied Microbiology and Biotechnology 103: 4565–4574. DOI: https://doi.org/10.1007/s00253....
 
21.
Liu Q., Lin J., Wang W., Huang H., Li S. 2015. Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochemical Engineering Journal 93: 31‒37. DOI: https://doi.org/10.1016/j.bej.....
 
22.
Liu X., Ren B., Gao H., Liu M., Dai H., Song F., Yu Z. 2012b. Optimization for the production of surfactin with a new synergistic antifungal activity. PLoS ONE 7 (5): e34430. DOI: https://doi.org/10.1371/journa....
 
23.
Liu J.F., Yang J., Yang S.Z., Ye R.Q., Mu B.Z. 2012a. Effect of different amino acids in culture media on Surfactin variants produced by Bacillus subtilis TD7. Applied Biochemistry and Biotechnology 166: 2091–2100. DOI: https://doi.org/10.1007/s12010....
 
24.
Mazurkiewicz A., Jakubowska M., Tumialis D., Skrzecz I., Roik K., Pezowicz E., Gross A. 2019. Laboratory bioassay of selected entomopathogenic nematodes as mortality factors of Oulema melanopus (Coleoptera: Chrysomelidae). Journal of Entomological Science 54: 390–400. DOI: https://doi.org/10.18474/JES18....
 
25.
Mnif I., Elleuch M., Chaabouni S.E., Ghribi D. 2013. Bacillus subtilis SPB1 biosurfactant: production optimization and insecticidal activity against the carob moth Ectomyelois ceratoniae. Crop Protection 50: 66‒72. DOI: https://doi.org/10.1016/j.crop....
 
26.
Philips C.R., Herbert D.A., Kuhar T.P., Reisig D.D., Thomason W.E., Malone S. 2011. Fifty years of cereal leaf beetle in the US: an update on its biology, management, and current research. International Journal of Pest Management 2: 1–5. DOI: https://doi.org/10.1603/IPM110....
 
27.
Rodríguez M., Marín A., Torres M., Béjar V., Campos M., Sampedro I. 2018. Aphicidal activity of surfactants produced by Bacillus atrophaeus L193. Frontiers in Microbiology 18(9): 3114. DOI: https://www.frontiersin.org/ar....
 
28.
Salazar B., Ortiz A., Keswani C., Minkina T., Mandzhieva S., Pratap Singh S., Rekadwad B., Borriss R., Jain A., Singh H.B. 2022. Bacillus spp. as bio‑factories for antifungal secondary metabolites: Innovation beyond whole organism formulations. Microbial Ecology: 1–24. DOI: https://doi.org/10.1007/s00248....
 
29.
Sosnowska D. 2018. The contribution of conservation biological control method to integrated plant protection and organic farming. Progress in Plant Protection 58 (4): 288‒293. DOI: https://doi.org/10.14199/ppp-2....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top