ORIGINAL ARTICLE
 
HIGHLIGHTS
  • Allelochemical compounds induced oxidative stress.
  • High density of redroot pigweed reduced the growth of wheat.
  • Activity of enzymes in wheat increased in the presence of redroot pigweed.
  • Total protein in the roots of wheat or redroot pigweed increased in intercropping.
  • GC/MS analysis showed that most of the compounds in soil extract, are allelochemical.
KEYWORDS
TOPICS
ABSTRACT
Allelopathy refers to the beneficial and detrimental effects of one plant on another plant in both crops and weeds through the production of secondary compounds. In order to evaluate the allelopathic effects of wheat (Triticum aestivum L.) as a crop and redroot pigweed (Amaranthus retroflexus L.) as a common weed worldwide on each other in intercropping, these plants were cultivated under controlled conditions at Tabriz University laboratory. The ratios of wheat to redroot pigweed were, 100 : 0 and vice versa as a control, 75 : 25, 50 : 50, and 25 : 75. The results showed that at the ratio of 25 : 75 (wheat : redroot pigweed), the fresh and dry weight of roots and shoot length of wheat decreased significantly compared to the control. The fresh and dry weight of wheat shoots showed a significant decrease at different ratios compared to the control. Shoot peroxidase (POD), root superoxide dismutase (SOD), and root and shoot catalase (CAT) activities in redroot pigweed increased in all intercropping ratios compared to the control. POD activity in wheat roots was higher at all ratios than in the control. Furthermore, the ratio of 75 : 25 (wheat : redroot pigweed) led to increased activity of POD enzymes and malonedialdehyde (MDA) content in wheat shoots. Moreover, roots of redroot pigweed showed increased activity of ascorbate peroxidase (APX) and SOD enzymes and MDA content. With increased density of redroot pigweed, the soluble sugar content of wheat roots reduced significantly. However, the content of insoluble sugar and total protein increased. Root exudate compounds such as terpenoids, phenolic compounds, fatty alcohol, steroids, fatty acids, and alkanes were identified using gas chromatography/mass spectrometry (GC/MS). The findings showed that the roots were more exposed to oxidative stress due to direct contact with allelochemical compounds. Our results support the hypothesis that increasing the density can reduce the toxicity of allelochemical compounds and that increasing the activity of the antioxidant system will improve plant growth under allelochemical stress.
RESPONSIBLE EDITOR
Łukasz Sobiech
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (81)
1.
Ahmad I., Cheng Z., Meng H., Liu T., Nan W., Kha M.A. Khan A.R. 2013. Effect of intercropped garlic (Allium sativum) on chlorophyl. Pakistan Journal of Botany 45 (6): 1889–1896.
 
2.
Akter P., Islam M. 2019. Allelopathic effects of root exudates of some weeds on germinability and growth of radish (Raphanus sativus L.) and cucumber (Cucumis sativus L.). Indian Journal of Agricultural Research 53 (1): 33–38. DOI: https://doi.org/ 10.18805/IJARe.A-381.
 
3.
Algandaby M.M., Salama M. 2018. Management of the noxious weed; Medicago polymorpha L. via allelopathy of some medicinal plants from Taif region, Saudi Arabia. Saudi Journal of Biological Sciences 25 (7): 1339–1347. DOI: https://doi.org/10.1016/j.sjbs....
 
4.
Arbona V., Marco A.J., Iglesias D.J., López-Climent M.F., Talon M., Gómez-Cadenas A., 2005. Carbohydrate depletion in roots and leaves of salt-stressed potted Citrus clementina L. Plant Growth Regulation 46 (2): 153–160. DOI: https://doi.org/10.1007/s10725....
 
5.
Aslam F., Khaliq A., Matloob A., Tanveer A., Hussain S., Zahir Z.A. 2017. Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications. Chemoecology 27 (1): 1–24. DOI: https://doi.org/10.1007/s00049....
 
6.
Bachheti A., Sharma A., Bachheti R.K., Husen A., Pandey D.P. 2020. Plant Allelochemicals and Their Various Applications. p. 441–465. In: “Co-Evolution of Secondary Metabolites” (J.M. Mérillon, K. Ramawat, eds). Reference Series in Phytochemistry. Springer, Cham. DOI: https://doi.org/10.1007/978-3-....
 
7.
Bakhshayeshan-Agdam H., Salehi-Lisar S.Y., Motafakkerazad R. 2019. Allelopathic effects of redroot pigweed (Amaranthus retroflexus L.) aqueous extract on cucumber and wheat. Allelopathy Journal 46 (1): 55–72. DOI: https://doi.org/10.26651/allel....
 
8.
Bakhshayeshan-Agdam H., Salehi-Lisar S.Y., Sedghi Samarkhazan N., Mahdavi M., Motafakkerazad R., Khodaie F., Zarrini G., Razeghi J. 2021. In vitro study of redroot pigweed effects as weed plant species on leukemia. Natural Product Research 36 (17): 4411–4414. DOI: https://doi.org/10.1080/147864....
 
9.
Batish D.R., Singh H.P., Setia N., Kaur S., Kohli R.K. 2006. 2-Benzoxazolinone (BOA) induced oxidative stress, lipid peroxidation and changes in some antioxidant enzyme activities in mung bean (Phaseolus aureus). Plant Physiology and Biochemistry 44 (11–12): 819–827. DOI: https://doi.org/10.1016/j.plap....
 
10.
Bernat W., Gawronska H., Gawronski S.W. 2004. Physiological effects of allelopathic activity of sunflower on mustard. Zeszyty Problemowe Postępów Nauk Rolniczych – Polska Akademia Nauk 496 (1): 275–288.
 
11.
Bhatla S.C. 2018. Secondary metabolites. p. 1099–1166. In: “Plant Physiology, Development and Metabolism”. Springer, Singapore. DOI: https://doi.org/10.1007/978-98....
 
12.
Boominathan R., Doran P.M. 2002. Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytologist 156 (2): 205–215. DOI: https://doi.org/10.1046/j.1469....
 
13.
Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72 (1–2): 248–254. DOI: https://doi.org/10.1016/0003-2....
 
14.
Chance B., Mealy A.C. 1955. Assay of catalases and peroxidases. Methods in Enzymology 11: 764–755. DOI: https://doi.org/10.1016/S0076-....
 
15.
Cipollini Jr.D.F.1998. The induction of soluble peroxidase activity in bean leaves by wind-induced mechanical perturbation. American Journal of Botany 85 (11): 1586–1591. DOI: https://doi.org/10.2307/244648....
 
16.
Cruz-Ortega R., Lara-Núñez A., Anaya A.L. 2007. Allelochemical stress can trigger oxidative damage in receptor plants: mode of action of phytotoxicity. Plant Signaling & Behavior 2 (4): 269–270. DOI: https://doi.org/10.4161/psb.2.....
 
17.
Demmig-Adams B., Stewart J.J., López-Pozo M., Polutchko S.K., Adams III.W.W. 2020. Zeaxanthin, a molecule for photoprotection in many different environments. Molecules 25: 5825. DOI: https://doi.org/10.3390/molecu....
 
18.
Desikan R., Hancock J., Neill S., 2005. Reactive oxygen species as signalling molecules. Antioxid. React. Oxygen Species Plants 169–196.
 
19.
Ding H., Ali A., Cheng Z., 2019. An allelopathic role for garlic root exudates in the regulation of carbohydrate metabolism in cucumber in a hydroponic co-culture system. Plants 9 (1): 45. DOI: https://doi.org/10.3390/plants....
 
20.
Effiong K., Hu J., Xu C., Zhang Y., Yu S., Tang T., Huang Y., Lu Y., Li W., Zeng J., Xiao X. 2022. 3-Indoleacrylic acid from canola straw as a promising antialgal agent-Inhibition effect and mechanism on bloom-forming Prorocentrum donghaiense. Marine Pollution Bulletin 178: 113657. DOI: https://doi.org/10.1016/j.marp....
 
21.
Fangue-Yapseu G.Y., Mouafo-Tchinda R.A., Kenne M.F., Onomo P.E., Djocgoue P.F. 2021. Allelopathic effect of three wild plants (Azadirachta indica, Tithonia diversifolia and Thevetia peruviana) on tomato (Lycopersicum esculentum Mill.) growth and stimulation of metabolites involved in plant resistance. American Journal of Plant Sciences 12 (3): 285–299. DOI: https://doi.org/10.4236/ajps.2....
 
22.
Farooq M., Jabran K., Cheema Z.A., Wahid A., Siddique K.H. 2011. The role of allelopathy in agricultural pest management. Pest Management Science 67 (5): 493–506. DOI: https://doi.org/10.1002/ps.209....
 
23.
Fazeli F., Ghorbanli M., Niknam V. 2007. Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biologia Plantarum 51 (1): 98–103. DOI: https://doi.org/10.1007/s10535....
 
24.
Foyer C.H., Noctor G. 2005. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell 17 (7): 1866–1875. DOI: https://doi.org/10.1105/tpc.10....
 
25.
Gfeller A., Glauser G., Etter C., Signarbieux C., Wirth J. 2018. Fagopyrum esculentum alters its root exudation after Amaranthus retroflexus recognition and suppresses weed growth. Frontiers of Plant Scienc 9: 50. DOI: https://doi.org/10.3389/fpls.2....
 
26.
Gill S.S., Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plan Physiology & Biochemistry 48 (12): 909–930. DOI: https://doi.org/10.1016/j.plap....
 
27.
Gniazdowska A., Bogatek, R. 2005. Allelopathic interactions between plants. Multi site action of allelochemicals. Acta Physiologiae Plantarum, Plant. 27 (3): 395–407. DOI: https://doi.org/10.1007/s11738....
 
28.
Gopinath S., Sakthidevi G., Muthukumaraswamy S., Mohan V.R. 2013. GC-MS analysis of bioactive constitiuents of Hypericum mysorense (Hypericaceae). Journal of Current Chemical and Pharmaceutical Sciences 3: 6–15.
 
29.
Harinasut P., Poonsopa D., Roengmongkol K., Charoensataporn R. 2003. Salinity effects on antioxidant enzymes in mulberry cultivar. ScienceAsia 29 (2): 109–113. DOI: https://doi.org/10.2306/scienc....
 
30.
Horn G., Hofweber R., Kremer W., Kalbitzer H.R. 2007. Structure and function of bacterial cold shock proteins. Cellular and Molecular Life Sciences 64 (12): 1457–1470. DOI: https://doi.org/10.1007/s00018....
 
31.
Hussain M.I., Reigosa M.J. 2011. Allelochemical stress inhbits growth, leaf water relations PSII photochemistry, nonphotochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. Journal of Experimental Botany 62 (13): 4533–4545. DOI: http://dx.doi.org/10.1093/jxb/....
 
32.
Hussain M.I., Vieites-Álvarez Y., Otero P., Prieto M.A., Simal-Gandara J., Reigosa M.J. Sánchez-Moreiras A.M. 2022. Weed pressure determines the chemical profile of wheat (Triticum aestivum L.) and its allelochemicals potential. Pest Management Science 78 (4): 1605–1619. DOI: https://doi.org/10.1002/ps.677....
 
33.
Ibrahim M., Ahmad N., Shinwari Z.K., Bano A., Ullah F. 2013. Allelopathic assessment of genetically modified and non modified maize (Zea mays L.) on physiology of wheat (Triticum aestivum L.). Pakistan Journal of Botany 45 (1): 235–240.
 
34.
Iqbal A., Fry S.C. 2012. Potent endogenous allelopathic compounds in Lepidium sativum seed exudate: effects on epidermal cell growth in Amaranthus caudatus seedlings. Journal of Experimental Botany 63 (7): 2595–2604. DOI: http://dx.doi.org/10.1093/jxb/....
 
35.
Jabran K. 2017. Manipulation of allelopathic crops for weed control. p. 65–75. Cham: Springer International Publishing.
 
36.
Jali P., Samal I.P., Jena S., Mahalik G. 2021. Morphological and biochemical responses of Macrotyloma uniflorum (Lam.) Verdc. to allelopathic effects of Mikania micrantha Kunth extracts. Heliyon 7 (8): e07822. DOI: https://doi.org/10.1016/j.heli....
 
37.
Knox J., Jaggi D., Paul M.S. 2010. Evaluation of allelopathic potential of selected plant species on Parthenium hysterophorus. Egyptian Journal of Biology 12: 57–62.
 
38.
Kochert G., Helebust J.A., Craig J.S. 1978. Physiological methods: Carbohydrate determination by the phenol sulfuric acid method. p. 13–16. In: “Physiological Methods” (Khochert G., ed.). Cambridge University, press Cambridge, UK.
 
39.
Konstantinović B., Blagojević M., Konstantinović B., Samardžić N. 2014. Allelopathic effect of weed species Amaranthus retroflexus L. on maize seed germination. Romanian Agricultural Research 31: 315–321.
 
40.
Ladhari A., Andolfi A., DellaGreca M. 2020. Physiological and oxidative stress responses of lettuce to cleomside A: A thiohydroximate, as a new allelochemical from Cleome arabica L. Molecules 25 (19): 4461. DOI: https://doi.org/10.3390/molecu....
 
41.
Lee M.L., Vassilaros D.L., White C.M. 1979. Retention indices for programmed-temperature capillary-column gas chromatography of polycyclic aromatic hydrocarbons. Analytical Chemistry 51 (6): 768–773.
 
42.
Li J., Jin Z. 2010. Potential allelopathic effects of Mikania micrantha on the seed germination and seedling growth of Coix lacryma-jobi. Weed Biology and Management 10 (3): 194–201. DOI: https://doi.org/10.1111/j.1445....
 
43.
Li Z.H., Wang Q., Ruan X., Pan C.D., Jiang D.A. 2010. Phenolics and plant allelopathy. Molecules 15 (12): 8933-8952. https://doi.org/10.3390/molecu....
 
44.
Liang Y., Hu F., Yang M., Yu J. 2003. Antioxidative defenses and water deficit-induced oxidative damage in rice (Oryza sativa L.) growing on non-flooded paddy soils with ground mulching. Plant and Soil 257 (2): 407–416. DOI: https://doi.org/10.1023/A:1027....
 
45.
Lichtenthaler H.K. 1987. Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350–382. DOI: https://doi.org/10.1016/0076-6....
 
46.
Ma X., Wu H., Jiang W., Ma Y., Ma Y. 2015. Interference between redroot pigweed (Amaranthus retroflexus L.) and cotton (Gossypium hirsutum L.): growth analysis. PLOS One 10 (6): e0130475. DOI: https://doi.org/10.1371/journa....
 
47.
Mahmood K., Khaliq A., Cheema Z.A., Arshad M. 2013. Allelopathic activity of Pakistani wheat genotypes against wild oat (Avena fatua L.). Pakistan Journal of Biological and Agricultural Sciences 50 (2): 169–176.
 
48.
Ming Y., Hu G.X., Li J., Zhu Z.J., Fan X.M. Yuan D.Y. 2020. Allelopathic effects of Castanea henryi aqueous extracts on the growth and physiology of Brassica pekinensis and Zea mays. Chemistry & Biodiversity 17 (6): e2000135. DOI: https://doi.org/10.1002/cbdv.2....
 
49.
Morsy M.R., Jouve L., Hausman J.F., Hoffmann L., Stewart J.M. 2007. Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. Journal of Plant Physiology 164 (2): 157–167. DOI: https://doi.org/10.1016/j.jplp....
 
50.
Mushtaq W., Siddiqui M.B. 2018. Allelopathy in Solanaceae plants. Journal of Plant Protection Research 58 (1): https://doi.org/ 10.24425/119113.
 
51.
Oyeniyi T.A., Odekanyin O.O., Kuku A., Otusanya O.O. 2016. Allelopathic effects of Tithonia diversifolia extracts on biochemical parameters and growth of Vigna unguiculata. International Journal of Biology. 8 (3): 45. DOI: https://doi.org/ 10.5539/ijb.v8n3pxx.
 
52.
Postma J.A., Hecht V.L., Hikosaka,K., Nord E.A., Pons T.L., Poorter H. 2021. Dividing the pie: A quantitative review on plant density responses. Plant, Cell and Environment 44 (4): 1072–1094. DOI: https://doi.org/10.1111/pce.13....
 
53.
Pouresmaeil M., Motafakkerazad R. 2018. Dual allelopathic effects of yarrow’s different organs extract on germination and seedling growth of wheat. International Journal of Plant Biology & Research 6 (1): 1083.
 
54.
Prasad S.M., Dwivedi R., Zeeshan M., Singh R., 2004. UV-B and cadmium induced changes in pigments, photosynthetic electron transport activity, antioxidant levels and antioxidative enzyme activities of Riccia sp. Acta Physiologiae Plantarum 26 (4): 423. DOI: https://doi.org/10.1007/s11738....
 
55.
Qasem J.R. 2018. Competition of redroot pigweed (Amaranthus retroflexus L.) and nettle-leaved goosefoot (Chenopodium murale L.) with tomato (Lycopersicon esculentum Mill.) cultivars. The Journal of Horticulture Sciences and Biotechnology 93 (6): 634–643. DOI: https://doi.org/10.1080/146203....
 
56.
Ramachandran A., Venkataraman N.S. 2016. Allelopathic effects of aqueous leaf extracts of Datura metel L. on Parthenium hysterophorus L. Life sciences Leaflets 72: 14–22.
 
57.
Ribeiro V.de M., Spiassi A., Marcon T.R., Lima G.P.de, Corsato J.M., Fortes, A.M.T. 2017. Antioxidative enzymes of Cucumis sativus seeds are modulated by Leucaena leucocephalai extracts. Acta Scientiarum, Biological Sciences 39 (3): 373–380. DOI: https://doi.org/10.4025/actasc....
 
58.
Roitsch T. 1999. Source-sink regulation by sugar and stress. Current Opinion in Plant Biology 2 (3): 198–206. DOI: https://doi.org/10.1016/S1369-....
 
59.
Salehi-Lisar S.Y., Deljoo S. 2015. Physiological effect of phenanthrene on Triticum aestivum, Helianthus annus and Medicago sativa. EurAsian Journal of BioSciences 9 (1): 29–37. DOI: https://doi.org/10.5053/ejobio....
 
60.
Scavo A., Restuccia A., Mauromicale G. 2018. Allelopathy: principles and basic aspects for agroecosystem control. p. 47–101. In: “Sustainable Agriculture Reviews 28” (S. Gaba, B. Smith, E. Lichtfouse, eds.). Vol 28. Sustainable Agriculture Reviews, Springer, Cham. DOI: https://doi.org/10.1007/978-3-....
 
61.
Shahrokhi S., Darvishzadeh M., Mehrpooyan M., Farboodi M. 2012. Comparison of allelopathic effects of Amaranthus retroflexus L. different organs extracts on germination and initial growth of Alvand and Zarrin wheat cultivars. International Journal of Agronomy & Plant Production 3 (11): 489–494. DOI: https://doi.org/ 10.17265/2161-6256/2015.08.006.
 
62.
Shahrokhi S., Hejazi S.N., Khodabandeh H., Farboodi M., Faramarzi A. 2011. Allelopathic effect of aqueous extracts of pigweed, Amaranthus retroflexus L. organs on germination and growth of five barley cultivars. p. 80–84. In: 3rd International Conference on Chemical, Biological and Environmental Engineering. Singapore.
 
63.
Shinde M.A., Salve J.T. 2019. Allelopathic effects of weeds on Triticum Aestivum. International Journal of Engineering Science and Computing 9 (2): 19873–19876.
 
64.
Siddique M.A.B., Ismail B.S. 2013. Allelopathic effects of Fimbristylis miliacea on the physiological activities of five Malaysian rice varieties. Australian Journal of Crop Science 7 (13): 2062–2067.
 
65.
Singh N.B., Thapar R.I.T.I. 2003. Allelopathic influence of Cannabis sativa on growth and metabolism of Parthenium hysterophorus. Allelopathy Journal. 12: 61–70. DOI: https://search.informit.org/do....
 
66.
Singh H.P., Batish D.R., Kaur S., Arora K, Kohli R.K. 2006. α-Pinene inhibits growth and induces oxidative stress in roots. Annals of Botany 98 (6): 1261–1269. DOI: https://doi.org/10.1093/aob/mc....
 
67.
Singh N.B., Singh A., Singh D. 2008. Autotoxic effects of Lycopersicum esculentum. Allelopathy Journal 22: 429–442.
 
68.
Siyar S., Majeed A., Muhammad Z., Ali H., Inayat N. 2019. Allelopathic effect of aqueous extracts of three weed species on the growth and leaf chlorophyll content of bread wheat. Acta Ecologica Sinica. 39 (1): 63–68. DOI: https://doi.org/10.1016/j.chna....
 
69.
Srivasava J.N., Ghatak A., Kumar A. 2017. Allelopathy: How plants suppress other plants. Singh Rashtriya Krishi 12 (1): 103.
 
70.
Staszek P., Krasuska U., Ciacka K., Gniazdowska A. 2021. ROS Metabolism perturbation as an element of mode of action of allelochemicals. Antioxidants 10 (11): 1648. DOI: https://doi.org/10.3390/antiox....
 
71.
Talukdar D. 2013. Allelopathic effects of Lantana camara L. on Lathyrus sativus L.: Oxidative imbalance and cytogenetic consequences. Allelopathy Journal 31 (1): 71–90.
 
72.
Tian M., Li Q., Zhao W., Qiao B., Shi S., Yu M., Li X., Li C., Zhao C. 2022. Potential allelopathic interference of Abutilon theophrasti Medik. Powder/extract on seed germination, seedling growth and root system activity of maize, wheat and soybean. Agronomy 12 (4): 844. DOI: https://doi.org/10.3390/agrono....
 
73.
Torawane S.D., Mokat D.N. 2021. Allelopathic potential of weed Neanotis lancifolia (Hook. f.) WH Lewis on seed germination and metabolism of mungbean and rice. Allelopathy Journal 52 (2): 277–290. DOI: https://doi.org/10.26651/allel....
 
74.
Tuzet A., Rahantaniaina M.S., Noctor G. 2019. Analyzing the function of catalase and the ascorbate–glutathione pathway in H2O2 processing: Insights from an experimentally constrained kinetic model. Antioxidants & Redox Signaling 30 (9): 1238–1268. DOI: https://doi.org/10.1089/ars.20....
 
75.
Uesugi A., Johnson R., Kessler A. 2019. Context-dependent induction of allelopathy in plants under competition. Oikos 128 (10): 1492–1502. DOI: https://doi.org/10.1111/oik.06....
 
76.
Winterbourn C.C., Mcgrath B.M., Carrell R.W. 1976. Reactions involving superoxide and normal and unstable hemoglobins. Biochemical Journal 155 (3): 493–502. DOI: https://doi.org/10.1042/bj1550....
 
77.
Zhang F., Chen F., Liu W., Guo J., Wan F. 2012. ρ-Cymene inhibits growth and induces oxidative stress in rice seedling plants. Weed Science 60 (4): 564–570. DOI: https://doi.org/10.1614/WS-D-1....
 
78.
Zhang S., Zhang B., Dai W., Zhang X. 2011. Oxidative damage and antioxidant responses in Microcystis aeruginosa exposed to the allelochemical berberine isolated from golden thread. Journal of Plant Physiology 168 (7): 639–643. DOI: https://doi.org/10.1016/j.jplp....
 
79.
Zheljazkov V.D., Jeliazkova E.A., Astatkie T. 2021. Allelopathic effects of essential oils on seed germination of barley and wheat. Plants 10 (12): 2728. DOI: https://doi.org/10.3390/plants....
 
80.
Zheng Y.Q., Zhao Y., Dong F.S., Liu X.G., Yao J.R., Hurle K. 2007. Allelopathic effects of wheat extracts and DIMBOA on weeds. Allelopathy Journal 19 (1): 171–177.
 
81.
Zuo S.P., Ma Y.Q., Ye L.T. 2012. In vitro assessment of allelopathic effects of wheat on potato. Allelopathy Journal 30 (1): 1–10.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top