ORIGINAL ARTICLE
Evaluation of Pelargonium graveolens essential oil to prevent gray mold in rose flowers
More details
Hide details
1
Producción y Protección Vegetal, ICiAgro Litoral, UNL, CONICET, FCA, Argentina
2
Cultivos Intensivos, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Argentina
3
Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2022-01-03
Acceptance date: 2022-02-08
Online publication date: 2022-05-13
Journal of Plant Protection Research 2022;62(2):145-152
HIGHLIGHTS
- Essential oil of Pelargonium graveolens at 250 ppm inhibited B.cinerea both in vitro and in vivo.
- Spraying roses with essential oil could protect for five days from B. cinerea in vase-living conditions.
- Geraniol, Citronellol, Linalool and γ-Eudesmol were the main oil constituent.
KEYWORDS
TOPICS
ABSTRACT
The main pathogen that deteriorates the quality of rose flowers during the postharvest stage
belongs to the fungal genus Botrytis. The chemical products used to control the disease
caused by this pathogen have been losing effectiveness due to the appearance of resistance.
The present study describes the in vitro and in vivo fungicidal activity of Pelargonium graveolens
essential oil and its chemical composition. The essential oil was obtained by hydrodistillation,
and the in vitro fungicidal activity was determined by agar diffusion assays,
showing 100% of fungal growth inhibition at 250 ppm. In vivo assays were performed on
Rosa grandiflora flowers treated with 250 ppm of P. graveolens essential oil, using distillate
water as a positive control and the commercial fungicide carbendazim as a negative one.
No significant differences were obtained between the treatment with the essential oil and
the treatment with the commercial fungicide. The chemical profile of the essential oil was
determined by GC-MS. The main compounds detected were geraniol (24.89%), citronellol
(19.50%), linalool (10.92%) and γ-eudesmol (8.93%). These results encourage the possible
use of P. graveolens essential oil for the control of B. cinerea in rose flowers.
FUNDING
This work was supported by Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Agencia Nacional
de Promoción Científica y Tecnológica (ANPCyT),
UNL and UNR.
RESPONSIBLE EDITOR
Andrea Toledo
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (37)
1.
Adams R. 2007. Identification of essential oils components by gas chromatography/mass spectroscopy (Vol. 456). Allured Publishing Corporation. Carol Stream, Illinois, USA.
2.
Alejo A., Burgueño E., Maldonado L.A., Herrera G., Felix R., Quintana E.T. 2019. In vitro effect of the crude extract of a potato common scab Streptomycete in Sinaloa, Mexico. Revista Argentina de Microbiología 51: 363–370. DOI: https:// doi.org/10.1016/j.ram.2018.09.002.
3.
Álvarez-Castellanos P., Bishop C., Pascual-Villalobos M. 2001. Fungicidal activity of the essential oil of flowerheads of Chrysanthemum against agricultural pathogens. Phytochemistry 57: 99–102. DOI:
https://doi.org/10.1016/S0031-....
4.
Babu K., Kaul V. 2005. Variation in essential oil composition of rose-scented geranium (Pelargonium sp.) distilled by different distillation techniques. Flavors and Fragrance Journal 20: 222–231. DOI:
https://doi.org/10.1002/ffj.14....
5.
Badawy M.E., Abdelgaleil S.A. 2014. Composition and antimicrobial activity of essential oils isolated from Egyptian plants against plant pathogenic bacteria and fungi. Industrial Crops and Products 52: 776–782. DOI:
https://doi.org/10.1016/j.indc....
6.
Bika R., Baysal-Gurel F., Jennings C. 2020. Botrytis cinerea management in ornamental production: a continuous battle. Canadian Journal of Plant Pathology 1–21. DOI:
https://doi.org/10.1080/070606....
7.
Blerot B., Baudino S., Prunier C., Demarne F., Toulemonde B., Caissard J.C. 2016. Botany, agronomy and biotechnology of Pelargonium used for essential oil production. Phytochemistry Reviews 15: 935–960. DOI:
https://doi.org/10.1007/s11101....
8.
Bouzenna H., Krichen L. 2013. Pelargonium graveolens L’Her and Artemisia arborescens L. essential oils: chemical composition, fungicidal activity against Rhizoctonia solani and insecticidal activity against Rhysopertha dominica. Natural Product Research 27: 841–846. DOI: https:// doi.org/10.1080/14786419.2012.711325.
9.
Božović M., Navarra A., Garzoli S., Pepi F., Ragno R. 2017. Essential oils extraction: A 24-hour steam distillation systematic methodology. Natural Product Research 31: 2387–2396. DOI:
https://doi.org/10.1080/147864....
10.
Cheng F., Cheng Z. 2015. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science 6: 1020. DOI:
https://doi.org/10.3389/fpls.2....
11.
CLSI. 2008. Clinical and Laboratory Standards Institute. 2nd ed. Reference Method for Broth Dilution Fungicidal Susceptibility Testing for Filamentous Fungi. M38 A2. Wayne, USA.
12.
Córdova-Guerrero I., Aragon-Martínez O.H., Díaz-Rubio L., Franco-Cabrera S., Serafín-Higuera N.A., Pozos-Guillén A., Soto-Castro T., Martínez-Morales F., Isiordia-Espinoza M. 2016. Antibacterial and antifungal activity of an extract of Salvia apiana against microorganisms of clinical importance. Revista Argentina de Microbiología 48: 217–221. DOI:
https://doi.org/10.1016/j.ram.... (in Spanish).
13.
Dean R., Van Kan J., Pretorius Z., Hammond-Kosack K., Di Pietro A., Spanu P., Foster G. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13: 414–430. DOI:
https://doi.org/10.1111/j.1364....
14.
Diánez F., Santos M., Parra C., Navarro M.J., Blanco R., Gea F.J. 2018. Screening of antifungal activity of twelve essential oils against eight pathogenic fungi of vegetables and mushroom. Letters in Applied Microbiology 67 (4): 400–410. DOI:
https://doi.org/10.1111/lam.13....
15.
Di Liberto M., Stegmayer M.I., Svetaz L., Derita M. 2019. Evaluation of Argentinean medicinal plants and isolation of their bioactive compounds as an alternative for the control of postharvest fruits phytopathogenic fungi. Revista Brasileira de Farmacognosia 29: 686–689. DOI:
https://doi.org/10.1016/j.bjp.....
16.
Doimo L., Mackay D., Rintoul G., D’Arcy B., Fletcher R. 1999. Citronellol: geraniol ratios and temperature in geranium (Pelargonium hybrid). Journal of Horticultural Science and Biotechnology 74: 528–530. DOI:
https://doi.org/10.1080/146203....
17.
Džamić A., Soković M., Ristić M., Grujić S., Mileski K., Marin P. 2014. Chemical composition, fungicidal and antioxidant activity of Pelargonium graveolens essential oil. Journal of Applied Pharmaceutical Science 4: 001–005. DOI:
https://doi.org/10.7324/JAPS.2....
18.
Fayed S.A. 2009. Antioxidant and anticancer activities of Citrus reticulate (petitgrain mandarin) and Pelargonium graveolens (geranium) essential oils. Research Journal of Agriculture and Biological Sciences 5: 740–747.
19.
Guevara M.L.L., Guevara J.J.L, Espinosa H.R., Abascal L.L., González C.B.D. 2015. Efficiency of disinfection with essential oils and ultrasound on Escherichia coli inoculated in tomato fruits and the impact on antioxidant activity. Revista Argentina de Microbiología 47: 251–255. DOI:
https://doi.org/10.1016/j.ram.... (in Spanish).
20.
Hazendonk A., Ten Hoope M., Van der Wurff T. 1995. Method to test rose cultivars on their susceptibility to Botrytis cinerea during the post-harvest stage. Acta Horticulturae 405: 39–45. DOI:
https://doi.org/10.17660/ActaH....
21.
Herrera-Romero I., Ruales C., Caviedes M., Leon-Reyes A. 2017. Postharvest evaluation of natural coatings and antifungal agents to control Botrytis cinerea in Rosa sp. Phytoparasitica 45: 9–20. DOI:
https://doi.org/10.1007/s12600....
22.
Hua L., Yong C., Zhanquan Z., Boqiang L., Guozheng Q., Shiping T. 2018. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Quality and Safety 2: 111–119. DOI:
https://doi.org/10.1093/fqsafe....
23.
Kim J., Park J., Lim C., Lim J., Ryu J., Lee B., Kim D. 2012. Small RNA and transcriptome deep sequencing proffers insight into floral gene regulation in Rosa cultivars. BMC Genomics Data 13: 657–660. DOI:
https://doi.org/10.1186/1471-2....
24.
Morisigue D., Mata D., Facciuto G., Bullrich L. 2012. Floricultura: pasado y presente de la Floricultura Argentina. INTA. Buenos Aires, Argentina.
25.
Mossa A.T.H. 2016. Green pesticides: Essential oils as biopesticides in insect-pest management. International Journal of Environmental Science and Technology (Tehran) 9: 354–378. DOI:
https://doi.org/10.3923/jest.2....
26.
Muñoz M., Faust J.E., Schnabel G. 2019. Characterization of Botrytis cinerea from commercial cut flower roses. Plant Disease 103: 1577–1583. DOI:
https://doi.org/10.1094/PDIS-0....
27.
Pasini C., D´Aquila F., Curir P., Gullino M. 1997. Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses. Crop Protection 16: 251–256. DOI:
https://doi.org/10.1016/S0261-....
28.
Rana V., Juyal J.P., Blazquez M. 2002. Chemical constituents of essential oil of Pelargonium graveolens leaves. International Journal of Aromatherapy 12: 216–218. DOI:
https://doi.org/10.1016/S0962-....
29.
Rao B., Kaul P., Mallavarapu G., Ramesh S. 1996. Effect of seasonal climatic changes on biomass yield and terpenoid composition of rose-scented geranium (Pelargonium species). Biochemical Systematics and Ecology 24: 627–635. DOI:
https://doi.org/10.1016/S0305-....
30.
Rasband W.S. 1997. ImageJ Software.
32.
Rivera M., López M., Pizzingrilli P., Lopez S., Cabral D. 2015. Studies on the biocontrol of Botrytis cinerea in ornamental species Rosa (Rosa sp.) and Alpine violet (Cyclamen persicum), important species in Argentine floriculture, are susceptible to rot and blight caused by Botrytis cinerea. Fitosanidad 9: 106–107. (in Spanish, with English abstract).
33.
Samara R., Qubbaj T., Scott I., Mcdowell T. 2021. Effect of plant essential oils on the growth of Botrytis cinerea Pers.: Fr., Penicillium italicum Wehmer, and P. digitatum (Pers.) Sacc., diseases. Journal of Plant Protection Research 61 (4): 324–336. DOI:
https://doi.org/10.24425/jppr.....
34.
Stegmayer M.I., Fernández L.N., Álvarez N.H., Olivella L., Gutiérrez H.F., Favaro M.A., Derita M.G. 2021. Essential oils from native plants to control phytopathogenic fungi that affect fruit trees. FAVE Sección Ciencias Agrarias 20 (1): 317–329. DOI:
https://doi.org/10.14409/fa.v2... (in Spanish).
35.
Verma R.S., Rahman L.U., Verma R.K., Chauhan A., Singh A. 2013. Essential oil composition of Pelargonium graveolens L’Her ex Ait. Cultivars harvested in different seasons. Journal of Essential Oil Research 25: 372–379. DOI:
https://doi.org/10.1080/104129....
36.
Yan J., Wu H., Chen K., Feng J., Zhang Y. 2021. Antifungal activities and mode of action of Cymbopogon citratus, Thymus vulgaris, and Origanum heracleoticum essential oil vapors against Botrytis cinerea and their potential application to control postharvest strawberry gray mold. Foods 10: 2451. DOI:
https://doi.org/10.3390/foods1....
37.
Zuliani S.B., Qüesta T.M., Casella E., Villanova I. 2017. Floriculture in the Gran Rosario área Facultad de Ciencias Agrarias, Universidad Nacional de Rosario Instituto de Floricultura, INTA. Rosario, Argentina. (in Spanish).