ORIGINAL ARTICLE
 
HIGHLIGHTS
  • Arginine kinase is an important RNAi target in Aphis gossypii genome and, can be exploited as aphid control strategy.
  • Transgenic cotton lines expressing dsRNA targeted against A. gossypii showed upto 73% aphid mortality.
  • Plant-mediated RNAi exhibit significant downregulation of arginine kinase in Aphis gossypii during bioassay.
KEYWORDS
TOPICS
ABSTRACT
The cotton aphid Aphis gossypii is a major agricultural pest of cotton that causes substantial damage to the crop not only by sucking sap but also through virus transmission. Globally adopted traditional and contemporary approaches to control aphid infestation have certain limitations and are hazardous to human health. RNA interference (RNAi) technology has unfolded its potential as an effective crop protection strategy against various pests. In this study, we adopted plant-mediated RNAi strategy to enhance aphid resistance in cotton by targeting arginine kinase (AK), which is a crucial enzyme responsible for energy homeostasis in insects. We selected a 312bp dsRNA fragment containing eight siRNAs and showing optimum GC content, Hb index, and stable secondary structure based on computational prediction studies. The binary construct expressing dsRNA was used to transform local cotton variety MNH886 and four transgenic lines were obtained in the T1 generation. Out of the four T1 transgenic cotton lines, dsA-7 exhibited the highest aphid mortality (73.3%), whereas, dsA-1, dsA-3 and dsA-6 revealed 60%, 61%, and 66.6% aphid mortality, respectively, in comparison to 13.3% mortality in the mock control cotton line. Moreover, significant knockdown in mRNA expression of AK was observed in aphids fed dsA-7 which was 79%. In comparison, 54%, 47%, and 45% downregulation was recorded in aphids which fed on dsA-6, dsA-3, and dsA-1 transgenic cotton lines, respectively. These results revealed that plant-mediated downregulation of aphid RNA induced significant RNA interference in A. gossypii which resulted in considerable aphid mortality and led to plant protection against aphids.
ACKNOWLEDGEMENTS
This work was supported by the Higher Education Commission Pakistan, through Indigenous Ph.D. Fellowship. Authors are also grateful to International Foundation of Science (IFS) for supporting this research through grant No. 6257-1.
RESPONSIBLE EDITOR
Julia Minicka
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (44)
1.
Ahmad T., Muhammad W.H., Jamil M., Iqbal J. 2016. Population dynamics of aphids (Hemiptera: Aphididae) on wheat varieties (Triticum aestivum L.) as affected by abiotic conditions in Bahawalpur. Pakistan Journal of Zoology 48 (4): 1039–1044.
 
2.
Andrade E.C., Hunter W.B. 2017. RNAi feeding bioassay: development of a non‐transgenic approach to control Asian citrus psyllid and other hemipterans. Entomologia Experimentalis et Applicata 162 (3): 389–396. DOI: https://doi.org/10.1111/eea.12....
 
3.
Bento F.M., Marques R.N., Campana F.B., Demétrio C.G., Leandro R.A., Parra J.R.P., Figueira A. 2020. Gene silencing by RNAi via oral delivery of dsRNA by bacteria in the South American tomato pinworm, Tuta absoluta. Pest Management Science 76 (1): 287–295. DOI: https://doi.org/10.1002/ps.551....
 
4.
Blackman R.L., Eastop V.F. 2000. Aphids on the World's Crops: an Identification and Information Guide.Second Edition. John Wiley & Sons Ltd. Chichester, UK, 466 pp.
 
5.
Bozzato A., Romoli O., Polo D., Baggio F., Mazzotta G.M., Triolo G., Myers M.P., Sandrelli F. 2020. Arginine kinase interacts with 2MIT and is involved in Drosophila melanogaster short-term memory. Journal of Insect Physiology 127: 104118. DOI: https://doi.org/10.1016/j.jins....
 
6.
Casacuberta J.M., Devos Y., Du Jardin P., Ramon M., Vaucheret H., Nogué F. 2015. Biotechnological uses of RNAi in plants: risk assessment considerations. Trends in Biotechnology 33 (3): 145–147. DOI: https://doi.org/10.1016/j.tibt....
 
7.
Chan C.Y., Carmack C.S., Long D.D., Maliyekkel A., Shao Y., Roninson I.B., Ding Y. 2009. A structural interpretation of the effect of GC-content on efficiency of RNA interference. BMC Bioinformatics 10: 1–7. DOI: https://doi.org/10.1186/1471-2....
 
8.
Chen G., Liu Y., Jiang J., Jiang W., Kuang S., Tang L., Tang W., Zhang Y.A., Zhou X., Feng L. 2015. Effect of dietary arginine on the immune response and gene expression in head kidney and spleen following infection of Jian carp with Aeromonas hydrophila. Fish Shellfish Immunology 44 (1): 195–202. DOI: https://doi.org/10.1016/j.fsi.....
 
9.
Chowdhury U.F., Shoha, M.U.S., Hoque K.I., Beg M.A., Siam M.K.S., Moni M.A. 2021. A computational approach to design potential siRNA molecules as a prospective tool for silencing nucleocapsid phosphoprotein and surface glycoprotein gene of SARS-CoV-2. Genomics 113 (1): 331–343. DOI: https://doi.org/10.1016/j.ygen....
 
10.
Christiaens O., Whyard S., Vélez A.M., Smagghe G. 2020. Double-stranded RNA technology to control insect pests: Current status and challenges. Frontiers in Plant Sciences 11: 505962. https://doi.org/10.3389/fpls.2....
 
11.
De Francesco A., Simeone M., Gómez C., Costa N., Garcia M.L. 2020. Transgenic sweet orange expressing hairpin CP-mRNA in the interstock confers tolerance to citrus psorosis virus in the non-transgenic scion. Transgenic Research 29 (2): 215–228. DOI: https://doi.org/10.1007/s11248....
 
12.
Dellaporta S.L., Wood J., Hicks J.B. 1983. A plant DNA minipreparation: version II. Plant Molecular Biology Reporter 1: 19–21.
 
13.
Eldesouky S.E. 2019. Effectiveness of certain insecticides against cotton aphid, Aphis gossypii and their adverse impacts on two natural enemies. Egyptian Scientific Journal of Pesticides 5: 7–13.
 
14.
Fatima N., Tabassum B., Yousaf I., Malik M., Khan A., Sajid I.A., Tariq M., Toufiq N., Riaz S., Nasir I.A. 2019. Potential of endochitinase gene to control Fusarium wilt and early blight disease in transgenic potato lines. Journal of Plant Protection Research 59 (3): 376–382. DOI: 10.24425/jppr.2019.129755.
 
15.
Fu S., Liu Z., Chen J., Sun G., Jiang Y., Li M., Xiong L., Chen S., Zhou Y., Asad M., Yang G. 2020. Silencing arginine kinase/integrin β1 subunit by transgenic plant expressing dsRNA inhibits the development and survival of Plutella xylostella. Pest Management Sciences 76 (5): 1761–1771. DOI: https://doi.org/10.1002/ps.570....
 
16.
Godfrey L., Rosenheim J., Goodell P. 2000. Cotton aphid emerges as major pest in SJV cotton. California Agriculture 54 (6): 26–29. DOI: https://doi.org/10.3733/ca.v05....
 
17.
Gong Y.H., Yu X.R., Shang Q.L., Shi X.y., Gao X.W. 2014. Oral delivery mediated RNA interference of a carboxylesterase gene results in reduced resistance to organophosphorus insecticides in the cotton aphid, Aphis gossypii Glover. PLoS One 9 (8): e102823. DOI: https://doi.org/10.1371/journa....
 
18.
Jekayinoluwa T., Tripathi J.N., Dugdale B., Obiero G., Muge E., Dale J., Tripathi L. 2021. Transgenic expression of dsRNA targeting the Pentalonia nigronervosa acetylcholinesterase gene in banana and plantain reduces aphid populations. Plants 10 (4): 613. DOI: https://doi.org/10.3390/plants....
 
19.
Kola V.S.R., Renuka P., Madhav M.S., Mangrauthia S. K. 2015. Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing. Frontiers in Physiology 6: 119. https://doi.org/10.3389/fphys.....
 
20.
Limera C., Sabbadini S., Sweet J.B., Mezzetti B. 2017. New biotechnological tools for the genetic improvement of major woody fruit species. Frontiers in Plant Science 8: 1418. https://doi.org/10.3389/fpls.2....
 
21.
Livak, K. J., Schmittgen, T.D. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25: 402–408. https://doi.org/10.1006/meth.2....
 
22.
Luo, K. Q., Chang, D. C. 2004. The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochemical and Biophysical research communications 318(1): 303-310. https://doi.org/10.1016/j.bbrc....
 
23.
Ma Y.M., Chen N., Tan J.Y., Li, M.Y., Liu S. 2022. Molecular characterization of an arginine kinase from Lasioderma serricorne and the effect of gene silencing on larval survival. Journa of Stored Product Research 99: 102032. DOI: https://doi.org/10.1016/j.jspr....
 
24.
Mamta B., Rajam M. 2017. RNAi technology: a new platform for crop pest control. Physiology and Molecular Biology of Plants 23 (3): 487–501. DOI: https://doi.org/10.1007/s12298....
 
25.
Meng J., Lei J., Davitt A., Holt J.R., Huang J., Gold R., Vargo E.L., Tarone A.M., Zhu‐Salzman K. 2020. Suppressing tawny crazy ant (Nylanderia fulva) by RNAi technology. Insect Science 27 (1): 113–121. DOI: https://doi.org/10.1111/1744-7....
 
26.
Mezzetti B., Smagghe G., Arpaia S., Christiaens O., Dietz-Pfeilstetter A., Jones H., Kostov K., Sabbadini S., Opsahl-Sorteberg H-G., Ventura V., Taning C.N.T., Sweet J. 2020. RNAi: What is its position in agriculture? Journal of Pest Science 93 (4): 1125–1130. DOI: https://doi.org/10.1007/s10340....
 
27.
Murtaza S., Tabassum B., Tariq M., Riaz S., Yousaf I., Jabbar B., Khan A., Adeyinka O.S., Zameer M., Nasir I. A. 2022. Silencing a Myzus persicae macrophage inhibitory factor by plant-mediated rnai induces enhanced aphid mortality coupled with boosted RNAi efficacy in transgenic potato lines. Molecular Biotechnology 64: 152–1163. DOI: https://doi.org/10.1007/s12033....
 
28.
Qamar Z., Tariq M., Rehman T., Iqbal M.S., Sarwar M.B., Sharif M.N., Nasir I.A. 2019. Trackable CEMB-Klean cotton transgenic technology: afforadable climate neutral agri-biotech industrialization for developing countries. Advancemnets in Life Sciences 6 (3): 131-138. http://dx.doi.org/10.62940/als....
 
29.
Qi X.L., Su X.F., Lu G.Q., Liu C.X., Liang G.M., Cheng H.M. 2015. The effect of silencing arginine kinase by RNAi on the larval development of Helicoverpa armigera. Bulletin of Entomological Research 105 (5): 555–565. DOI: 10.1017/S0007485315000450.
 
30.
Raboudi F., Ben Moussa A., Makni H., Marrakchi M., Makni M. 2002. Serological detection of plant viruses in their aphid vectors and host plants in Tunisia. EPPO Bulletin 32 (3): 495–498. DOI: https://doi.org/10.1046/j.1365....
 
31.
Ramalho F.S., Fernandes F.S., Nascimento A.R.B., Nascimento J.L., Malaquias J.B., Silva C.A.D. 2012. Feeding damage from cotton aphids, Aphis gossypii Glover (Hemiptera: Heteroptera: Aphididae), in cotton with colored fiber intercropped with fennel. Annals of the Entomological Society of America 105: 20–27. DOI: https://doi.org/10.1603/AN1112....
 
32.
Shaheen M., Amin I., Mansoor S. 2015. Screening and evaluation of insecticidal RNAi partial gene constructs in non-target insect species. Pakistan Entomologist 36 (1): 13–20.
 
33.
Southern E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98 (3): 503–517.
 
34.
Tan J., Levine S.L., Bachman P.M., Jensen P.D., Mueller G.M., Uffman J.P., Meng C., Song Z., Richards K.B., Beevers M.H. 2016. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests. Toxicological and Environmental Chemistry 35 (2): 287–294. DOI: https://doi.org/10.1002/etc.30....
 
35.
Tanaka K., Ichinari S., Iwanami K., Yoshimatsu S., Suzuki T. 2007. Arginine kinase from the beetle Cissites cephalotes (Olivier). Molecular cloning, phylogenetic analysis and enzymatic properties. Insect Biochemistry & Molecular Biology 37 (4): 338–345. DOI: https://doi.org/10.1016/j.ibmb....
 
36.
Taning C.N., Arpaia S., Christiaens O., Dietz‐Pfeilstetter A., Jones H., Mezzetti B., Sabbadini S., Sorteberg H.G., Sweet J., Ventura V., Smagghe G. 2020. RNA‐based biocontrol compounds: current status and perspectives to reach the market. Pest Management Science 76 (3): 841–845. DOI: https://doi.org/10.1002/ps.568....
 
37.
Tian G., Cheng L., Qi X., Ge Z., Niu C., Zhang X., Jin S. 2015. Transgenic cotton plants expressing double-stranded RNAs target HMG-CoA reductase (HMGR) gene inhibits the growth, development and survival of cotton bollworms. International Journal of Biological Sciences 11 (11): 1296. DOI: 10.7150/ijbs.12463.
 
38.
Uda K., Fujimoto N., Akiyama Y., Mizuta K., Tanaka K., Ellington W.R., Suzuki T. 2006. Evolution of the arginine kinase gene family. Comparative Biochemistry and Physiology Part D Genomics Proteomics D 1 (2): 209–218. DOI: https://doi.org/10.1016/j.cbd.....
 
39.
Werr M., Cramer J., Ilg T. 2009. Identification and characterization of two arginine kinases from the parasitic insect Ctenocephalides felis. Insect Biochemistry and Molecular Biology 39 (9): 634–645. DOI: https://doi.org/10.1016/j.ibmb....
 
40.
Westwood J.H., Kim G. 2017. RNA mobility in parasitic plant–host interactions. RNA Biology 14 (4): 450–455. DOI: https://doi.org/10.1080/154762....
 
41.
Wu Q.Y., Li F., Zhu W.J.,Wang X.Y. 2007. Cloning, expression, purification, and characterization of arginine kinase from Locusta migratoria manilensis. Comparative Biochemistry and Physiology 148 (4): 355–362. https://doi.org/10.1016/j.cbpb....
 
42.
Zhang J., Li H., Zhong X., Tian J., Segers A., Xia L.,Francis F. 2022. RNA-Interference-Mediated Aphid Control in Crop Plants: A Review. Agriculture 12 (12): 2108. DOI: https://doi.org/10.3390/agricu....
 
43.
Zhang N., Wei J., Jiang H., Ge H., Zheng Y., Meng X., Qian K., Wang J. 2022. Knockdown or inhibition of arginine kinases enhances susceptibility of Tribolium castaneum to deltamethrin. Pesticide Biochemistry and Physiology 183: 105080. DOI: https://doi.org/10.1016/j.pest....
 
44.
Zhao Y., Yang G., Wang-Pruski G., You M. 2008. Phyllotreta striolata (Coleoptera: Chrysomelidae): Arginine kinase cloning and RNAi-based pest control. European Journal of Entomology 105 (5): 815.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top