ORIGINAL ARTICLE
Effects of silvicultural techniques on the diversity of microorganisms in forest soil and their possible participation in biological control of Armillaria and Heterobasidion
More details
Hide details
1
Department of Forest Pathology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland
2
Department of Forest Work Mechanization, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland
3
Research Institute of Horticulture,
Pomology Division, Pomologiczna 18, 96-100 Skierniewice, Poland
4
Department of Forest Soil Science and Forest Fertilization, Poznań University of Life Sciences,
Wojska Polskiego 71d, 60-625 Poznań, Poland
Submission date: 2015-03-09
Acceptance date: 2015-06-29
Corresponding author
Hanna Kwaśna
Department of Forest Pathology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznań, Poland
Journal of Plant Protection Research 2015;55(3):241-253
KEYWORDS
TOPICS
ABSTRACT
Effects of different pre-planting soil preparations and post-harvest wood debris applications in a clear-cut Scots pine plantation, on the abundance, diversity, and activity of culturable microorganisms were investigated. The investigation was done 9 years
after the re-plantings had been done. This formed part of an investigation of silvicultural practices for conservation and the biological control of
Armillaria
and
Heterobasidion
in northern temperate forests (Poland). The treatments being compared, were expected to
have altered the soil’s physical and chemical properties, and consequently, its biological properties. Only soft-rot microfungi from
the Ascomycota and Zygomycota were detected in the soil. Fungi, including those antagonistic to
Armillaria
and
Heterobasidion, were
more abundant after shallow ploughing than after deep ploughing or ridging, and where chipped rather than coarse wood debris was
left on the soil surface or incorporated. Scots pine trees had the most biomass and the least mortality after ridging and leaving coarse
wood debris on the surface (associated with only a relatively moderate abundance of fungi).
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (59)
1.
Arhipova A., Gaitnieks T., Vulfa L., Nikolajeva V., Balašova I. 2008. Heterobasidion annosumattistibu ietekmējošo faktoru novērtējums egļu audzēs. [Estimation of factors influencing development of Heterobasidion annosum in Spruce stands]. Latvijas Lauksaimniecības Universitātes Raksti 20: 117–127. (in Latvian).
2.
Avidano L., Gamalero E., Cossa G.P., Carraro E. 2005. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Applied Soil Ecology 30 (1): 21–33.
3.
Bergey D.H., Holt J.G. 1994. Bergey’s Manual of Determinative Bacteriology. 9th ed. The Williams & Wilkins, Baltimore, Maryland, USA, 787 pp.
4.
Blanchette R.A., Show C.G. 1978. Associations among bacteria, yeasts and Basidiomycetes during wood decay. Phytopathology 68 (4): 631–637.
5.
Bossio D., Girvan M., Verchot L., Bullimore J., Borelli T., Albrecht A., Scow K.M., Ball A.S., Pretty J.N., Osborn A.M. 2005. Soil microbial community response to land use change in an agricultural landscape of western Kenya. Microbial Ecology 49 (1): 50–62.
6.
Bradbury J.F. 1988. Identification of cultivable bacteria from plants and plant tissue cultures by use of simple classical methods. Acta Horticulturae 225: 27–37.
7.
Buee M., Reich M., Mura C., Morin E., Nilsson R.H., Uroz S., Martin F. 2009. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist 184 (1): 449–456.
8.
Domsch K.H., Gams W., Anderson T.-H. 1980.Compendium of Soil Fungi. Vol. 1. Academic Press, London, UK, 1264 pp.
9.
Dumas M.T., Boyonoski W. 1992. Scanning electron microscopy of mycoparasitism of Armillaria rhizomorphs by species of Trichoderma. European Journal of Forest Pathology 22 (6–7): 379–383.
10.
Epelde L., Hernandez-Allica J., Becerril J.M., Blanco F., Garbisu C. 2008. Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Science of the Total Environment 401 (1–3): 21–28.
11.
Fox R.T.V., Mc Que A.M., West J.S., Raziq F. 1994. Use of antagonistic fungi to control Armillaria root rot. p. 1115–1120. In: Brighton Crop Protection Conference “Pests and Diseases”. Brighton, UK, 21–24 November 1994, 1242 pp.
12.
Fukasawa Y., Osono T., Takeda H. 2005.Decomposition of Japanese beech wood by diverse fungi isolated from a cool temperate deciduous forest. Mycoscience 46 (2): 97–101.
13.
Fukasawa Y., Osono T., Takeda H. 2009a.Dynamics of physicochemical properties and occurrence of fungal fruit bodies during decomposition of coarse woody debris of Fagus crenata. Journal of Forest Research14 (1): 20–29.
14.
Fukasawa Y., Osono T., Takeda H. 2009b. Microfungus communities of Japanese beech logs at different stages of decay in a cool temperate deciduous forest. Canadian Journal of Forest Research 39 (8):1606–1614.
15.
Fukasawa Y., Osono T., Takeda H. 2010. Beech log decomposition by wood-inhabiting fungi in a cool temperate forest floor: a quantitative analysis focused on the decay activity of a dominant basidiomycete Omphalotus guepiniformis. Ecological Research 25 (5):959–966.
16.
Garbeva P., van Veen J.A., van Elsas J.D. 2004. Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annual Review of Phytopathology 42 (1): 243–270.
17.
Grantina-Ievina L., Kasparinskis R., Tabors G., Nikolajeva V. 2013. Features of saprophytic soil microorganism communities in conifer stands with or without Heterobasidion annosum sensu lato infection: a special emphasis on Penicillium spp. Environmental and Experimental Biology 11: 23–38.
18.
Green J.L., Holmes A.J., Westoby M., Oliver I., Briscoe D., Dangerfield M., Gillings M., Beattie A.J. 2004. Spatial scaling of microbial eukaryote diversity. Nature 432: 747–750.
19.
Harman G.E., Howell C.R., Vieterbo A., Chet I., Lorito M. 2004. Trichoderma species – opportunistic, avirulent plant symbionts. Nature Review Microbiology 2 (1): 43–56.
20.
Hendrix P.F., Parmelee R.W., Crossley D.A., Coleman D.C., Odum E.P., Groffman P.M. 1986. Detritus food webs in conventional and no-tillage agroecosystems. BioScience 36 (6): 374–380.
21.
Holt J.G. 1994. Bergey’s Manual of Determinative Bacteriology.Lippincott Williams & Wilkins, Philadelphia, USA, 816 pp.
22.
Hunter-Cevera J.C., Eveleigh D.E. 1990. Actinomycetes.p. 33–47. In: “Soil Biology Guide” (D.L. Dindal D.L., ed.).Wiley & Sons, New York, USA, 1349 pp.
23.
Kasel S., Bennett L.T., Tibbits J. 2008. Land use influences soil fungal community composition across central Victoria, south-eastern Australia. Soil Biology and Biochemistry 40 (7): 1724–173.
24.
Korhonen K. 1978. Interfertility and clonal size in the Armillariella mellea complex. Karstenia 18 (2): 31–42.
25.
Korhonen K., Stenlid J. 1998. Biology of Heterobasidion annosum.p. 43–70. In: “Heterobasidion annosum: Biology, Ecology, Impact and Control” (S. Woodward, J. Stenlid, R. Karjalainen, A. Hüttermann, eds.). CABI International, Cambridge, UK, 608 pp.
26.
Kozlovsky A.G., Zhelifonova V.P., Antipova T.V. 2013. Biologically active metabolites of Penicillium fungi.Signpost Open Access Journal. Organic & Biomolecular Chemistry 1 (1): 11–21.
27.
Kwaśna H. 1997a. Antagonistic effect of fungi communities from Scots pine fine roots on Heterobasidion annosum(Fr.) and Armillaria ostoyae(Romagn.) Herink growth. Phytopathologia Polonica 13: 133–146.
28.
Kwaśna H. 1997b. Antagonistic effect of fungi from Scots pine stump roots on Heterobasidion annosum and Armillaria ostoyae. Acta Mycologica 32 (2): 369–381.
29.
Kwaśna H. 1997c. Fungi on the surface of roots of Scots pine and its stumps and effect on Heterobasidion annosum(Fr.) Bref. and Armillaria ostoyae(Romagn.) Herink growth. Roczniki Nauk Rolniczych E 26: 109–123.
30.
Kwaśna H. 2001. Fungi in the rhizosphere of common oak and its stumps and their possible effect on infection by Armillaria. Applied Soil Ecology 17 (3): 215–227.
31.
Kwaśna H. 2002. Changes in microfungal communities in roots of Quercus rober stumps and their possible effect on colonization by Armillaria. Journal of Phytopathology 150 (7): 403–411.
32.
Kwaśna H., Bateman G.L., Ward E. 2008. Determining species diversity of microfungal communities in forest tree roots by pure-culture isolation and DNA sequencing. Applied Soil Ecology 40 (1): 44–56.
33.
Kwaśna H., Kotyńska U., Łakomy P., Mallett K. 2001. Stimulation of Armillaria rhizomorph formation by oak root fungi. Acta Mycologica 36 (2): 257–272.
34.
Kwaśna H.,Łakomy P.,Mallett K. 2004. Reaction of Armillaria ostoyae to forest soil microfungi. Forest Pathology 34 (3): 147–162.
35.
Legrand P., Guillaumin J.-J. 1993. Armillariaspecies in the forest ecosystems of the Auvergne (Central France). Acta Oecologica 14 (3): 389–403.
36.
Leveau J.H., Preston G.M. 2007. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. New Phytologist 177 (4): 859–876.
37.
Lumley T.C., Gignac L.D., Currah R.S. 2001. Microscopic communities of white spruce and trembling aspen logs at different stages of decay in disturbed and undisturbed sites in the boreal mixed-wood region of Alberta. Canadian Journal of Botany 79 (1): 76–92.
38.
Magurran A.E. 1988. Ecological Diversity and Its Measurement. Princeton University Press, Princeton, NJ, USA, 192 pp.
39.
Mańka M., Tyszkiewicz Z., Stępniewska-Jarosz S. 2006. Soil fungi communities effect on the growth of Heterobasidion annosum versus forest environment pollution. Phytopathologia Polonica 40: 43–56
40.
Mazzola M. 2002.Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie van Leeuwenhoek 81 (1–4): 557–564.
41.
Miles P.G., Chang S.T. 1997. Mushroom Biology. World Scientific Publishing Co. Pte. Ltd. Singapore, 345 pp.
42.
Nelson E.E., Pearce N.H., Malajczuk N. 1989. Competitive colonization of karri (Eucalyptus diversicolor) stem sections by Armillaria luteobubalina and Trichoderma spp. p. 79–83. In: Proceedings of the 7th International Conference on Root and Butt Rots of Forest Trees. International Union of Forest Research Organizations (IUFRO), 9–16 August 1988, Vernon and Victoria, BC, Canada.
43.
Nübel U., Engelen B., Felske A., Snaidr J., Wieshuber A., Amann R.I., Ludwig W., Backhaus H. 1996. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. Journal of Bacteriology 178 (19): 5636–5643.
44.
Onsando J.M., Waudo S.W.1994.Interaction between Trichoderma species and Armillaria root rot fungus of tea in Kenya. International Journal of Pest Management 40 (1): 69–74.
45.
Osono T., Takeda H. 2001.Organic chemical and nutrient dynamics in decomposing beech leaf litter in relation to fungal ingrowth and succession during 3-year decomposition processes in a cool temperate deciduous forest in Japan. Ecological Research16 (4): 649–670.
46.
Pratt J.E., Niemi M., Sierota Z.H. 2000. Comparison of three products based on Phlebiopsis gigantea for the control of Heterobasidion annosum in Europe. Biocontrol Science and Technology 10 (4): 467–477.
47.
Rainey P.B. 1991. Effect of Pseudomonas putida on hyphal growth of Agaricus bisporus.Mycological Research 95 (6): 699–704.
48.
Raper K.B., Thom C. 1949.A Manual of the Penicillia. Williams & Wilkins Co., Baltimore, USA, 875 pp.
49.
Reaves J.L., Shaw C.G., Mayfield J.E. 1990. The effects of Trichoderma spp. isolated from burned and non-burned forest soils on the growth and development of Armillaria ostoyae in culture. Northwest Science 64 (1): 39–44.
50.
Rishbeth J. 1963. Stump protection against Fomes annosus. III. Inoculation with Peniophora gigantea. Annals of Applied Biology 52 (1): 63–77.
51.
Samils N., Olson A,, Stenlid J. 2008. The capacity in Heterobasidion annosum s.l. to resist overgrowth by the biocontrol agent Phlebiopsis gigantea is a heritable trait. Biological Control 45 (3): 419–426.
52.
Sa J.C. de M.,CerriC.C., Dick W.A.,LalR., VenskeFilhoS.P., PiccoloM.C., FeiglB.E. 2001. Organic matter dynamics an carbon sequestration rates for a tillage chronosequence in a Brazilian oxisol. Soil Science Society of America Journal 65 (5):1486–1499.
53.
Shaw C.G., III, Kile G.A. 1991. Armillaria Root Disease. Agriculture Handbook, Forest Service, United States Department of Agriculture, Washington, D.C. No. 691, 233 pp.
54.
Sierota Z. 1976. Inhibitory effect of Trichoderma viride Pers. ex Fr. filtrates on Fomes annosum (Fr.) Cke. in relation to some carbon sources. European Journal of Forest Pathology 7 (3): 164–172.
55.
Smith F.A., Read D.J. 2008. Mycorrhizal Symbiosis. Academic Press, San Diego, USA, 605 pp.
56.
Stenlid J., Redfern D.B. 1998. Spread within the tree and stand. pp. 125–142. In: “Heterobasidion annosum: Biology, Ecology, Impact and Control” (S. Woodward, J. Stenlid, R. Karjalainen, A. Hüttermann eds.). CAB International, Cambridge, UK, 608 pp.
57.
Szwajkowska-Michałek L., Kwaśna H., Łakomy P., Perkowski J. 2012. Inhibition of Armillaria and Heterobasidion growth by Penicillium adametzii isolated from Pinus sylvestris forest soil. Forest Pathology 42 (6): 454–466.
58.
Wichmann G., Sun J., Dementhon K., Glass N.L., Lindow S.E.2008. A novel gene, phcA from Pseudomonas syringae induces programmed cell death in the filamentous fungus Neurospora crassa. Molecular Microbiology 68 (3): 672–689.
59.
Woodward S., Stenlid J., Karjalainen R., Hüttermann A. (eds.) 1998. Heterobasidion annosum: Biology, Ecology, Impact and Control. CAB International, Cambridge, UK, 608 pp.