RAPID COMMUNICATION
Effects of bacterial populations, temperature and exogenous hydrogen peroxide on the induction of the hypersensitive response in Nicotiana tabacum against Xanthomonas perforans
 
More details
Hide details
1
Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
 
 
Submission date: 2017-03-12
 
 
Acceptance date: 2017-05-24
 
 
Corresponding author
Seyyed Mohsen Taghavi
Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
 
 
Journal of Plant Protection Research 2017;57(2):201-204
 
KEYWORDS
TOPICS
ABSTRACT
The objective of this study was to investigate the effects of inoculum concentration, plant post-inoculation incubation temperature and exogenous hydrogen peroxide (H2O2) on the induction of the hypersensitive response (HR) in Nicotiana tabacum against Xanthomonas perforans. Inoculation of leaves with X. perforans at a concentration of 108 CFU · ml–1 and incubation of plants at 30°C resulted in the strongest HR elicitation. Furthermore, an exogenous supply of H2O2 accelerated X. perforans-induced HR, whereas in planta H2O2 removal by application of catalase led to a delay in HR development. Our data suggest that H2O2 has an important role in HR of N. tabacum against X. perforans.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (24)
1.
Alvarez M.E., Pennell R.I., Meijer P.J., Ishikawa A., Dixon R.A., Lamb C. 1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92 (6): 773–784. DOI: 10.1016/S0092-8674-(00)81405-1.
 
2.
Bestwick C.S., Brown I.R., Bennett M., Mansfi eld J.W. 1997. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv. phaseolicola. Plant Cell 9 (2): 209–221. DOI: 10.1105/tpc.9.2.209.
 
3.
Bolwell G.P., Daudi A. 2009. Reactive oxygen species in plant–pathogen interactions. p. 113–133. In: “Reactive Oxygen Species in Plant Signaling (Signaling and Communication in Plants)” (L.A. del Río, A. Puppo, eds.). Springer-Verlag, Berlin Heidelberg, Germany, 246 pp.
 
4.
Bradley D.J., Kjellbom P., Lamb C.J. 1992. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70 (1): 21–30. DOI: 10.1016/0092-8674(92)90530-P.
 
5.
Budde I.P., Ullrich M.S. 2000. Interactions of Pseudomonas syringae pv. glycinea with host and nonhost plants in relation to temperature and phytotoxin synthesis. Molecular Plant-Microbe Interaction 13 (9): 951–961. DOI: 10.1094/MPMI.2000.13.9.951.
 
6.
Cheng Y., Zhang H., Yao J., Wang X., Xu J., Han Q., Wei G., Huang L., Kang Z. 2012. Characterization of non-host resistance in broad bean to the wheat stripe rust pathogen. BMC Plant Biology 12 (1): 96. DOI: 10.1186/1471-2229-12-96.
 
7.
Fan J., Doerner P. 2012. Genetic and molecular basis of non-host disease resistance: complex, yes; silver bullet, no. Current Opinion in Plant Biology 15 (4): 400–406. DOI: 10.1016/j.pbi.2012.03.001.
 
8.
Hao X., Yu K., Ma Q., Song X., Li H., Wang M. 2011. Histochemical studies on the accumulation of H2O2 and hypersensitive cell death in the non-host resistance of pepper against Blumeria graminis f. sp. tritici. Physiological and Molecular Plant Pathology 76 (2): 104–111. DOI: 10.1016/j.pmpp.2011.07.003.
 
9.
Hückelhoven R., Dechert C., Kogel K.H. 2001. Non-host resistance of barley is associated with a hydrogen peroxide burst at sites of attempted penetration by wheat powdery mildew fungus. Molecular Plant Pathology 2 (4): 199–205. DOI: 10.1046/j.1464-6722.2001.00067.x.
 
10.
Jahnen W., Hahlbrock K. 1988. Cellular localization of nonhost resistance reactions of parsley (Petroselinum crispum) to fungal infection. Planta 173 (2): 197–204. DOI: 10.1007/BF00403011.
 
11.
Jones J.B., Lacy G.H., Bouzar H., Stall R.E., Schaad N.W. 2004. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Systematic and Applied Microbiology 27 (6): 755–762. DOI: 10.1078/0723202042369884.
 
12.
Klement Z., Farkas G.L., Lovrekovich L. 1964. Hypersensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Phytopathology 54: 474–477.
 
13.
Kwak Y.S., Han K.S., Lee J.H., Lee K.H., Chung W.S., Mysore K.S., Kwon Y.S., Kim H.K., Bae D.W. 2009. Different oxidative burst pattern occur during host and non-host resistance responses triggered by Xanthomonas campestris in pepper. Journal of Plant Biotechnology 36: 244–254.
 
14.
Lamb C., Dixon R.A. 1997. The oxidative burst in plant disease resistance. Annual Review of Plant Physiology 48: 251–275. DOI: 10.1146/annurev.arplant.48.1.251.
 
15.
Levine A., Tenhaken R., Dixon R., Lamb C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79 (4): 583–593. DOI: 10.1016/0092-8674(94)90544-4.
 
16.
Li W., Xu Y.P., Yang J., Chen G.Y., Cai X.Z. 2015. Hydrogen peroxide is indispensable to Xanthomonas oryzae pv. oryzaeinduced hypersensitive response and nonhost resistance in Nicotiana benthamiana. Australasian Plant Pathology 44: 611–617. DOI: 10.1007/s13313-015-0376-1.
 
17.
Mellersh D.G., Foulds I.V., Higgins V.J., Heath M.C. 2002. H2O2 plays different roles in determining penetration failure inthree diverse plant-fungal interactions. The Plant Journal 29 (3): 257–268. DOI: 10.1046/j.0960-7412.2001.01215.x.
 
18.
Mittler R., Vanderauwera S., Gollery M., Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9 (10): 490–498. DOI: 10.1016/j.tplants.2004.08.009.
 
19.
Osdaghi E., Taghavi S.M., Hamzehzarghani H., Fazliarab A., Lamichhane J.R. 2016. Monitoring the occurrence of tomato bacterial spot and range of the causal agent Xanthomonas perforans in Iran. Plant Pathology. DOI: 10.1111/ppa.12642.
 
20.
Safaie Farahani A., Taghavi S.M. 2015. Expression profi ling of malate dehydrogenase, superoxide dismutase and polygalacturonase-inhibiting protein in common bean in response to host and non-host pathogens. Journal of Plant Pathology 97 (3): 491–495. DOI: 10.4454/JPP.V97I3.030.
 
21.
Safaie Farahani A., Taghavi M. 2016. Changes of antioxidant enzymes of mung bean [Vigna radiata (L.) R Wilczek] in response to host and non-host bacterial pathogens. Journal of Plant Protection Research 56 (1): 95–99. DOI: 10.1515/jppr-2016-0016.
 
22.
Senthil-Kumar M., Mysore K.S. 2013. Non-host resistance against bacterial pathogens: retrospectives and prospects. Annual Review of Phytopathology 51: 407–427. DOI: 1146/annurev-phyto-082712-102319.
 
23.
Yoda H., Yamaguchi Y., San H. 2003. Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiology 132 (4): 1973–1981.
 
24.
Zurbriggen M.D., Carrillo N., Tognetti V.B., Melzer M., Peisker M., Hause B., Hajirezaei M.R. 2009. Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria. Plant Journal 60 (6): 962–973. DOI: 10.1111/j.1365-313X.2009.04010.x.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top