RAPID COMMUNICATION
 
KEYWORDS
TOPICS
ABSTRACT
The efficacy of the fungus Lecanicillium lecanii and two bacteria, Bacillus thuringiensis and Streptomyces avermitilis against the two-spotted spider mite Tetranychus urticae Koch and side effects on its predatory mite Phytoseiulus persimilis A.-H. was studied under laboratory conditions. Both S. avermitilis and B. thuringiensis based biopesticides resulted in maximum mortality rates of 90–100% and 91–99% for spider mite adults and larvae, respectively. The mortality of spider mite larvae under fungus L. lecanii treatment was around 60%. These bacteria and fungus also had toxic effects against P. persimilis on the same day of applying insecticides and releasing the predatory mite. The release of predatory mites one day post-treatment of plants with L. lecanii and 7 days post-treatment with B. thuringiensis or S. avermitilis did not negatively affect the survival of predators released. These findings support the potential use of entomopathogenic fungi and bacteria in combination with predatory mites in spider mite biocontrol.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (24)
1.
Alper M., Gunes H., Civelek H.S., Dursun O., Eskin A. 2013. Toxic effects of some native Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) isolates against Tetranychus urticae Koch (Acarina: Tetranychidae), Ceroplastes rusci L. (Homoptera: Coccidae) and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Türkiye Entomoloji Bültenin 3 (2): 75–87.
 
2.
Brown S., Kerns D.L., Gore J., Lorenz G., Stewart S. 2017. Susceptibility of twospotted spider mites (Tetranychus urticae) to abamectin in Midsouth cotton. Crop Protection 98: 179–183. DOI: https://doi.org/10.1016/j.crop....
 
3.
Butt T.M., Coates C.J., Dubovskiy I.M., Ratcliffe N.A. 2016. Entomopathogenic fungi: new insights into host-pathogen interactions. Advances in Genetics 94: 307–364. DOI: https://doi.org/10.1016/bs.adg....
 
4.
Cakmak I., Janssen A., Sabelis M.W., Baspinar H. 2009. Biological control of an acarine pest by single and multiple natural enemies. Biological Control 50 (1): 60–65. DOI: https://doi.org/10.1016/j.bioc....
 
5.
Campos F., Krupa D.A., Dybas R.A. 1996. Susceptibility of populations of twospotted spider mites (Acari: Tetranychidae) from Florida, Holland, and the Canary Islands to abamectin and characterization of abamectin resistance. Journal of Economic Entomology 89 (3): 347–393. DOI: https://doi.org/10.1093/jee/89....
 
6.
Chandler D., Davidson G., Jacobson R.J. 2005. Laboratory and glasshouse evaluation of entomopathogenic fungi against the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), on tomato, Lycopersicon esculentum. Biocontrol Science and Technology 15 (1): 37–54. DOI: https://doi.org/10.1080/095831....
 
7.
Chapman M.H., Hoy M.A. 1991. Relative toxicity of Bacillus thuringiensis var. tenebrionis to the two‐spotted spider mite (Tetranychus urticae Koch) and its predator Metaseiulus occidentalis (Nesbitt) (Acari, Tetranychidae and Phytoseiidae). Journal of Applied Entomology 111 (1–5): 147–154. DOI: https://doi.org/10.1111/j.1439....
 
8.
Dogan Y.O., Hazir S., Yildiz A., Butt T.M., Cakmak I. 2017. Evaluation of entomopathogenic fungi for the control of Tetranychus urticae (Acari: Tetranychidae) and the effect of Metarhizium brunneum on the predatory mites (Acari: Phytoseiidae). Biological Control 111: 6–12. DOI: https://doi.org/10.1016/j.bioc....
 
9.
Döker İ., Kazak C. 2019. Non-target effects of five acaricides on a native population of Amblyseius swirskii (Acari: Phytoseiidae). International Journal of Acarology 45 (1–2): 69–74. DOI: https://doi.org/10.1080/016479....
 
10.
Donka A., Sermann H., Buttner C. 2008. Effect of the entomopathogenic fungus Lecanicillium muscariumon the predatory mite Phytoseiulus persimilis as a non-target organism. Communications in Agricultural and Applied Biological Sciences 73 (3): 395–403.
 
11.
Gohar M., Perchat S. 2001. Sample preparation for β-exotoxin determination in Bacillus thuringiensis cultures by reversed-phase high-performance liquid chromatography. Analytical Biochemistry 298 (1): 112–117. DOI: https://doi.org/10.1006/abio.2....
 
12.
Hall I.M., Hunter D.K., Arakawa K.Y. 1971. The effect of the β-exotoxin fraction of Bacillus thuringiensis on the citrus red mite. Journal of Invertebrate Pathology 18 (3): 359–362. DOI: https://doi.org/10.1016/0022-2....
 
13.
Krieg A. 1972. Über die Wirkung von Bacillus thuringiensis-Präparaten auf Spinnmilben (Tetranychidae). Anzeiger für Schädlingskunde und Pflanzenschutz 45: 169–171. DOI: https://doi.org/10.1007/BF0187....
 
14.
Lasota J. 1991. Avermectins, a novel class of compounds: implications for use in arthropod pest control. Annual Review of Entomology 36: 91–117. DOI: https://doi.org/10.1146/annure....
 
15.
Liu X., Ruan L., Peng D., Li L., Sun M., Yu Z. 2014. Thuringiensin: a thermostable secondary metabolite from Bacillus thuringiensis with insecticidal activity against a wide range of insects. Toxins 6 (8): 2229–2238. DOI: https://doi.org/10.3390/toxins....
 
16.
Ludwig S.W., Oetting R.D. 2001. Susceptibility of natural enemies to infection by Beauveria bassiana and impact of insecticides on Ipheseius degenerans (Acari: Phytoseiidae). Journal of Agricultural and Urban Entomology 18 (3): 169–178. DOI: https://doi.org/10.1080/019722....
 
17.
Maniania N.K., Bugeme D.M., Wekesa V.W., Delalibera I., Knapp M. 2008. Role of entomopathogenic fungi in the control of Tetranychus evansi and Tetranychus urticae (Acari: Tetranychidae), pests of horticultural crops. Experimental and Applied Acarology 46: 259–274. DOI: https://doi.org/10.1007/s10493....
 
18.
Midthassel A., Leather S.R., Wright D.J., Baxter I.H. 2016. Compatibility of Amblyseius swirskii with Beauveria bassiana: two potentially complimentary biocontrol agents. BioControl 61 (4): 437–447. DOI: https://doi.org/10.1007/s10526....
 
19.
Shi W.B., Feng M.G. 2009. Effect of fungal infection on reproductive potential and survival time of Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology 48 (3): 229–237. DOI: https://doi.org/10.1007/s10493....
 
20.
Tomilova O.G., Kryukov V.Y., Duisembekov B.A., Yaroslavtseva O.N., Tyurin M.V., Kryukova N.A., Skorokhod V., Dubovskiy I.M., Glupov V.V. 2016. Immune-physiological aspects of synergy between avermectins and the entomopathogenic fungus Metarhizium robertsii in Colorado potato beetle larvae. Journal of Invertebrate Pathology 96: 14–20. DOI: https://doi.org/10.1016/j.jip.....
 
21.
Ullah M.S., Lim U.T. 2017. Laboratory evaluation of the effect of Beauveria bassiana on the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Journal of Invertebrate Pathology 148: 102–109. DOI: https://doi.org/10.1016/j.jip.....
 
22.
Van Leeuwen T., Tirry L., Yamamoto A., Nauen R., Dermauw W. 2015. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochemistry and Physiology 121: 12–21. DOI: https://doi.org/10.1016/j.pest....
 
23.
Yaroslavtseva O.N., Dubovskiy I.M., Khodyrev V.P., Duisembekov B.A., Kryukov V.Y., Glupov V.V. 2017. Immunological mechanisms of synergy between fungus Metarhizium robertsii and bacteria Bacillus thuringiensis ssp. morrisoni on Colorado potato beetle larvae. Journal of Insect Physiology 96: 14–20. DOI: https://doi.org/10.1016/j.jins....
 
24.
Zhang X., Guo J.J., Zou X., Jin D.Ch. 2018. Pathogenic differences of the entomopathogenic fungus Isaria cateniannulata to the spider mite Tetranychus urticae (Trombidiformes: Tetranychidae) and its predator Euseius nicholsi (Mesostigmata: Phytoseiidae). Experimental and Applied Acarology 75: 69–84. DOI: https://doi.org/10.1007/s10493....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top