ORIGINAL ARTICLE
Ecophysiological conditions of germination of barnyard grass [Echinochloa crus-galli (L.) P. Beauv.] diaspores
 
More details
Hide details
1
University of Warmia and Mazur, Department of Botany and Nature Protection Plac Łódzki 1, 10-718 Olsztyn, Poland
 
2
University of Warmia and Mazur, Department of Plant Physiology and Biotechnology Oczapowskiego 1a, 10-718 Olsztyn, Poland
 
 
Corresponding author
Magdalena Kucewicz
University of Warmia and Mazur, Department of Botany and Nature Protection Plac Łódzki 1, 10-718 Olsztyn, Poland
 
 
Journal of Plant Protection Research 2006;46(1):73-84
 
KEYWORDS
TOPICS
ABSTRACT
The aim of the study was to investigate the effect of some different environmental conditions prevailing during the development and ripening of Echinochloa crus-galli diaspores on their germination. Some seeds were tested in the autumn the same year, whereas others were divided into two groups: dispersed seedsand seeds within the inflorescence. Then the seeds of both groups were buried. After eight-month stratification in the soil, the diaspores were tested under the same conditions as the samples examined in the autumn. The seeds tested in the spring germinated faster than those tested in the autumn. Also the germination capacity of barnyard grass caryopses examined in the summer was almost twofold higher than the germination capacity of those examined in the autumn. Both autumn and spring tests revealed that the harvest time affected germination. The seeds obtained in the second half of August and at the beginning of September (in the middle of the growing season) were characterized by a higher germination capacity than the caryopses collected at the beginning and the end of the reproduction period. The results show that the germination capacity and rate were not influenced by the place of origin, habitat conditions and accompanying plants. It was found in spring tests that germination depended on the kind of dissemination unit stored in the soil. After eight-month soil stratification, dispersed caryopses germinated by approx. 20% better than those stored with a part of the inflorescence.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (46)
1.
Aldrich R. 1997. Ekologia Chwastów w Roślinach Uprawnych. Podstawy Zwalczania Chwastów. (tłumaczenie na j. polski i adaptacja B. Połcik, K. Adamczewski). Towarzystwo Chemii i Inżynierii Ekologicznej, Opole 1995, 461 pp.
 
2.
Andersson L., Milberg P. 1998. Variation in seed dormancy among mother plants, populations and years of seed collection. Seed Sci. Res. 8: 29–38.
 
3.
Baskin J.M., Baskin C.C. 1977. Germination ecology of Sedum pulchellum Michx. ( Crassulaceae ). Am J. Bot. 64: 1242–1247.
 
4.
Baskin J.M., Baskin C.C. 1995. Variation in the annual dormancy cycle in buried seeds of the weedy winter annual Viola arvensis. Weed Res. 35: 353–362.
 
5.
Baskin C.C., Baskin J.M. 1998. Seeds. Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, 666 pp.
 
6.
Bochenek A. 1998. Ekofizjologiczne uwarunkowania dynamiki glebowego banku nasion chwastów. Post. Nauk Rol. 6: 83–100.
 
7.
Egley G.H. 1995. Seed germination in soil: dormancy cycles. p. 529–543. In “Seed Development and Germination” (J. Kigel, G. Galili., eds.). Marcel – Dekker, Inc. New York, Basel, Hong Kong.
 
8.
Ervin G.N., Wetzel R.G. 2001. Seed fall and field germination of needlerush, Juncus effusus L. Aquat. Bot. 71: 233–237.
 
9.
Falińska K., Jankowska-Błaszczuk M., Szydłowska J. 1994. Bank nasion w glebie. Wiad. Bot. 38: 35–46.
 
10.
Fenner M. 1992. Environmental influences on seed size and composition. Hort. Rev.13: 183–213.
 
11.
Gressel J.B., Holm L.G. 1964. Chemical inhibition of crop germination by weed seeds and the nature of inhibition by Abutilon theophrasti. Weed Res. 4: 44–53.
 
12.
Grodziński A.M. 1965. Allelopatija w Żizni Rastienij i Ich Soobszcziestw. Naukowa Dumka, Kijów.
 
13.
Grzesiuk S. 1961. O fizjologicznych właściwościach rozwoju nasion. Wiad. Bot. 5: 3–18.
 
14.
Grzesiuk S., Kulka K. 1981. Fizjologia i Biochemia Nasion. PWRiL, Warszawa, 606 pp.
 
15.
Gutterman Y. 2000. Genotypic and phenotypic germination survival strategies. p. 390–399. In „Seed Biology: Advances and Applications” (M.J. Black, K.J. Bradford, J. Vázquez-Ramos, eds.). CAB International.
 
16.
Gutterman Y. 1992a. Maturation dates affecting the germeability of Lactuca serriola L. achenes collected from a natural population in the Negev Desert highlands. Germination under constant temperatures. J. Arid. Environ. 22: 353–362.
 
17.
Gutterman Y. 1992b. Maternal effects on seeds during development. p. 27–59. In “Seeds. The Ecology of Regeneration in Plant Communities”. CAB International.
 
18.
Gutterman Y. 1994. Germinability under natural temperatures of Lactuca serriola L. achenes matured and collected on different dates from a natural population in the Negev Desert highlands. J. Arid Environ.28: 117–128.
 
19.
Honĕk A., Martinková Z. 1996. Geographic variation in seed dormancy among populations of Echinochloa crus-galli. Oecologia 108: 419–423.
 
20.
Honĕk A., Martinková Z., Jarosik V. 1999. Annual cycles of germinability and differences between primary and secondary dormancy in buried seeds of Echinochloa crus-galli.Weed Res. 39: 69–81.
 
21.
Joley D.B., Maddox D.M. Schoenig S.E., Mackey B.E. 2003. Parameters affecting germinability and seed bank dynamics in dimorphic achenes of Centaurea solstitialis in California. Can. J. Bot. 81: 993–1007.
 
22.
Jursík M., Soukup J., Venclová V., Holec J. 2003. Seed dormancy and germination of Shaggy soldier ( Galinsoga ciliata Blake.) and Common lambsquarter ( Chenopodium album L.). Plant Soil Environ. 49: 511–518.
 
23.
Karssen C.M., Derkx P.M., Post B.J. 1998. Study of seasonal variation in dormancy of Spergula arvensis L. seeds in a condensed annual temperature cycle. Weed Res. 28: 449–457.
 
24.
Keller M., Kollmann J. 1999. Effects of seed provenance on germination of herbs for agricultural compensation sites. Agric. Eco-Syst. Environ. 72: 87–99.
 
25.
Klips R.A., Peñalosa J. 2003. The timing of seed fall, innate dormancy, and ambient temperature in Lythrum salicaria. Aquat. Bot. 75: 1–7.
 
26.
Kolk H. 1979. Weed seeds. p. 9–24. In “Advances in Research and Technology of Seeds. Part 4. Ed. For International Seed Testing Association by J.R. Thompson, Wageningen.
 
27.
Li Sun Żun 1962. Badania ekologiczne nad chwastnicą jednostronną – Echinochloa crus-galli (L) var. longisetum Doll. Rocz. Nauk Rol. 86-A-1: 1–27.
 
28.
Lityński M. 1982. Biologiczne Podstawy Nasiennictwa. PWN, Warszawa, 487 pp. Loster S. 1981. Ekologia populacji Plantago uliginosa F.W. Schmidt subsp. uliginosa na zwałowisku popiołu w Skawinie. Zesz. Nauk. Uniw. Jagiel., Pr. Bot. 9: 7–30.
 
29.
Mierzwińska T., Sójka E. 1963. Zależność niektórych cech fizjologicznych nasion bobiku ( Vicia faba L. ssp. minor) od ich dojrzewania na roślinie macierzystej. Hod. Rośl. Aklim. Nasienn. 7: 261–273.
 
30.
Namuco O.S., Dizon M., Piggin C., Mortimer A.M., Lubigan R., Migo T., Hill J.E. 2000. Effect of afterripening temperature on seed germination of Echinochloa crus-galli (L.) Beauv. Third International Weed Science Congress, Foz do Iguassu, Brazil, p. 24.
 
31.
Naylor R.E.L., Abdalla A.F. 1982. Variation in germination behaviour. Seed Sci. Techn. 10: 67–76.
 
32.
Paterson J.G., Goodchild N.A., Boyd W.J.R. 1976. Effect of storage temperature, storage duration and germination temperature on the dormancy of seed of Avena fatua L. and Avena barbata Pott ex Link. Aust. J. Agric. 27: 373–379.
 
33.
Pourrat Y., Jacques R. 1975. The influence of photoperiodic conditions received by the mother plant on morphological and physiological characterics of Chenopodium polyspermum L. seeds. Plant Sci. Lett. 4: 273–279.
 
34.
Rice K.J. 1987.Evidence for the retention of genetic variation in Erodium seed dormancy by variable rainfall. Oecologia 72: 589–596.
 
35.
Roach D.A. 1986. Timing of seed production and dispersal in Geranium carrolinianum - effects on fitness. Ecology 67: 572–576.
 
36.
Roberts H.A., Neilson J.E. 1980. Seed survival and periodicity of seedling in some species of Atriplex, Chenopodium, Polygonum and Rumex. Ann. Appl. Biol. 94: 111–120.
 
37.
Roberts H.A., Neilson J.E. 1983. Seed survival and periodicity of seedling emergence in eight species of Cruciferae. Ann. Appl. Biol. 103: 301–304.
 
38.
Schütz W., Milberg P. 1997. Seed dormancy in Carex canescens: regional differences and ecological consequences. Oikos 78: 420–428.
 
39.
Symonides E. 1997. Strategia reprodukcyjna terofitów, mity i fakty I. Teoretyczny model strategii optymalnej. Wiad. Ekol. 23: 103–135.
 
40.
Symonides E. 1989. Bank nasion jako element strategii reprodukcyjnej terofitów. Wiad. Ekol. 35: 107–143.
 
41.
Trewawas A.J. 1986. Timing and memory processes in seed embryo dormancy – a conceptual paradigm for plant development questions. Bioassays 6: 87–97.
 
42.
Vleeshouwers L.M., Bouwmeester H.J., Karssen C.M. 1995. Redefining seed dormancy: an attempt to integrate physiology and ecology. J. Ecol. 83: 1031–1037.
 
43.
Vleeshouwers L.M., Bouwmeester H.J. 2001. A simulation model for seasonal changes in dormancy and germination of weed seeds. Seed Sci. Res. 11: 77–92.
 
44.
Westoby M. 1981. How diversified seed germination behaviour is selected. Am. Nat. 118: 882–885.
 
45.
Wójcik-Wojtkowiak D. 1987. Rola allelopatii w rolniczych ekosystemach. Post. Nauk Rol. 34: 37–55.
 
46.
Zimdahl R. 1993. Fundamentals of Weed Science. Academic Press, 450 pp.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top