ORIGINAL ARTICLE
Dose-response and growth rate variation among glyphosate resistant and susceptible Conyza albida and Conyza bonariensis populations
 
More details
Hide details
1
Laboratory of Biological Control of Pesticides, Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
 
2
Agrotypos Publishing SA, Athens, Greece
 
3
Laboratory of Agronomy, Faculty of Crop Science, Agricultural University of Athens, Athens, Greece
 
4
Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2018-08-06
 
 
Acceptance date: 2019-03-20
 
 
Online publication date: 2019-04-04
 
 
Corresponding author
Ilias G. Eleftherohorinos   

Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
 
 
Journal of Plant Protection Research 2019;59(1):32-40
 
KEYWORDS
TOPICS
ABSTRACT
Plant responses to glyphosate applied at different doses were examined for one glyphosate resistant (R) and one glyphosate susceptible (S) population of Conyza albida and C. bonarienis. Growth rates and development stages of five R C. albida and three R C. bonarienis populations were also compared with those of their respective S counterparts to investigate the possible impact of the glyphosate resistance trait on their fitness. The GR50 values for C. albida R (3.94−5.22 kg a.i. · ha−1) and S (0.24−0.31 kg a.i. · ha−1) populations were higher than those of C. bonariensis R (0.60−1.51 kg a.i. · ha−1) and S (0.10−0.13 kg a.i. · ha−1). The growth rate (slope b) of one R C. albida population was lower than the respective S and other R populations, while growth rates of most R and S C. bonariensis populations were similar. Some R populations showed inconsistent differences in some development stages when compared to those of the S ones, which cannot be attributed to the glyphosate resistance trait.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (30)
1.
Alcorta M., Fidelibus M.W., Steenwerth K.L., Shrestha A. 2011. Effect of vineyard row orientation on growth and phenology of glyphosate-resistant and glyphosate-susceptible horseweed (Conyza canadensis). Weed Science 59 (1): 55−60. DOI: https://doi.org/10.1614/WS-D-1....
 
2.
Davis V.M, Kruger G.R., Stachler J.M., Loux M.M., Johnson W.G. 2009. Growth and seed production of horseweed (Conyza canadensis) populations resistant to glyphosate, ALS-inhibiting, and multiple (glyphosate + ALS-inhibiting) herbicides. Weed Science 57 (5): 494−504. DOI: https://doi.org/10.1614/WS-09-....
 
3.
Dennis M., Hembree K.J., Bushoven J.T., Shrestha A. 2016. Growth stage, temperature, and time of year affects the control of glyphosate-resistant and glyphosate-paraquat resistant Conyza bonariensis with saflufenacil. Crop Protection 81: 129−137. DOI: https://doi.org/10.1016/j.crop....
 
4.
Duke S.O., Powles S.B. 2008. Glyphosate: a once-in-a-century herbicide. Pest Management Science 64 (4): 319−325. DOI: https://doi.org/10.1002/ps.151....
 
5.
Ge X., d’Avignon D.A., Ackerman J.J., Duncan B., Spaur M.B., Sammons R.D. 2011. Glyphosate-resistant horseweed made sensitive to glyphosate: low-temperature suppression of glyphosate vacuolar sequestration revealed by 31P NMR. Pest Management Science 67 (10): 1215−1221. DOI: https://doi.org/10.1002/ps.216....
 
6.
Green J.M. 2007. Review of glyphosate and ALS-inhibiting herbicide crop resistance and resistant weed management. Weed Technology 21 (2): 547−558. DOI: https://doi.org/10.1614/WT-06-....
 
7.
Grantz D.A., Shrestha A., Vu H-B. 2008a. Early vigor and ozone response in horseweed (Conyza canadensis) biotypes differing in glyphosate resistance. Weed Science 56 (2): 224−230. DOI: https://doi.org/10.1614/WS-07-....
 
8.
Grantz D.A, Shrestha A., Vu H-B. 2008b. Ozone enhances adaptive benefit of glyphosate resistance in horseweed (Conyza canadensis). Weed Science 56 (4): 549−554. DOI: https://doi.org/10.1614/WS-07-....
 
9.
Heap I. 2018. The international survey of herbicide resistant weeds. Available on: http://www.weedscience.org. [Accessed: December 20, 2018].
 
10.
Kleinman Z., Ben-Ami G., Rubin B. 2016. From sensitivity to resistance − factors affecting the response of Conyza spp. to glyphosate. Pest Management Science 72 (9): 1681–1688. DOI: https://doi.org/10.1002/ps.418....
 
11.
Kleinman Z., Rubin B. 2017. Non-target-site glyphosate resistance in Conyza bonariensis is based on modified subcellular distribution of the herbicide. Pest Management Science 73 (1): 246−253. DOI: https://doi.org/10.1002/ps.429....
 
12.
Maxwell B.D., Roush M.L., Radosevich S.R. 1990. Predicting the evolution and dynamics of herbicide resistance in weed populations. Weed Technology 4 (1): 2−13. DOI: https://doi.org/10.1017/S08900....
 
13.
Moretti M.L., Hanson B.D., Hembree K.J., Shrestha A. 2013. Glyphosate resistance is more variable than paraquat resis tance in a multiple-resistant hairy fleabane (Conyza bonariensis) population. Weed Science 61 (3): 396−402. DOI: https://doi.org/10.1614/WS-D-1....
 
14.
Motulsky H.J., Christopoulos A. 2003. The first five questions to ask about nonlinear regression results. p. 29−31. In: “Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting”. GraphPad Software Inc. San Diego, USA, 351 pp.
 
15.
Mylonas P.N., Giannopolitis C.N., Efthimiadis P.G., Menexes G.C., Madesis P.B., Eleftherohorinos I.G. 2014. Glyphosate resistance of molecularly identified Conyza albida and Conyza bonariensis populations. Crop Protection 65: 207−215. DOI: https://doi.org/10.1016/j.crop....
 
16.
Papapanagiotou A.P., Paresidou M.I., Kaloumenos N.S., Eleftherohorinos I.G. 2015. ACCase mutations in Avena sterilis populations and their impact on plant fitness. Pesticide Biochemistry and Physiology 123: 40−48. DOI: https://doi.org/10.1016/j.pest....
 
17.
Pedersen B.P., Neve P., Andreasen C., Powles S.B. 2007. Ecological fitness of a glyphosate-resistant Lolium rigidum population: growth and seed production along a competition gradient. Basic and Applied Ecology 8 (3): 258−268. DOI: https://doi.org/10.1016/j.baae....
 
18.
Powles S.B. 2008. Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Management Science 64 (4): 360−365. DOI: https://doi.org/10.1002/ps.152....
 
19.
Seefeldt S.S., Jensen J.E., Fuerst E.P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technology 9 (2): 218−227. DOI: https://doi.org/10.1017/S08900....
 
20.
Shrestha A., Hanson B.D., Fidelibus M.W., Alcorta M. 2010. Growth, phenology, and intraspecific competition between glyphosate-resistant and glyphosate-susceptible horseweeds (Conyza canadensis) in the San Joaquin Valley of California. Weed Science 58 (2): 147−153. DOI: https://doi.org/10.1614/WS-D-0....
 
21.
Shrestha A., Steinhauer K.M., Moretti M.L., Hanson B.D., Jasieniuk M., Hembree K.J., Wright S.D. 2014. Distribution of glyphosate-resistant and glyphosate-susceptible hairy fleabane (Conyza bonariensis) in central California and their phenological development. Journal of Pest Science 87 (1): 201-209. DOI: https://doi.org/10.1007/s10340....
 
22.
Travlos I.S., Chachalis D. 2013. Relative competitiveness of glyphosate-resistant and glyphosate-susceptible populations of hairy fleabane, Conyza bonariensis. Journal of Pest Science 86 (2): 345−351. DOI: https://doi.org/10.1007/s10340....
 
23.
Vila-Aiub M.M., Neve P., Roux F. 2011. A unified approach to the estimation and interpretation of resistance costs in plants. Heredity 107 (5): 386–394. DOI: https://doi.org/10.1038/hdy.20....
 
24.
Vila-Aiub M.M., Gundel P.E., Yu Q., Powles S.B. 2013. Glyphosate resistance in Sorghum halepense and Lolium rigidum is reduced at suboptimal growing temperatures. Pest Management Science 69 (2): 228−232. DOI: https://doi.org/10.1002/ps.346....
 
25.
Walker S., Bell K., Robinson G., Widderick M. 2011. Flaxleaf fleabane (Conyza bonariensis) populations have developed glyphosate resistance in north-east Australian cropping fields. Crop Protection 30 (3): 311−317. DOI: https://doi.org/10.1016/j.crop....
 
26.
Weaver S.E. 2001. The biology of Canadian weeds. 115. Conyza canadensis. Canadian Journal of Plant Science 81 (4): 867−875. DOI: https://doi.org/10.4141/P00-19....
 
27.
Westhoven A.M., Kruger G.R., Gerber C.K., Stachler J.M., Loux M.M., Johnson W.G. 2008. Characterization of selected common lambsquarters (Chenopodium album) biotypes with tolerance to glyphosate. Weed Science 56 (5): 685−691. DOI: https://doi.org/10.1614/WS-08-....
 
28.
Williams II M.M., Jordan N., Yerkes C. 1995. The fitness cost of triazine resistance in jimsonweed (Datura stramonium L.). The American Midland Naturalist 133: 131−137.
 
29.
Zelaya I.A., Owen M.D.K., VanGessel M.J. 2004. Inheritance of evolved glyphosate resistance in Conyza canadensis (L.) Cronq. Theoretical and Applied Genetics 110 (1): 58−70. DOI: https://doi.org/10.1007/s00122....
 
30.
Zhang J., Salas M.L., Jordan N.R., Weller S.C. 1999. Biorational approaches to managing Datura stramonium. Weed Science 47 (6): 750−756. DOI: https://doi.org/10.1017/S00431....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top