ORIGINAL ARTICLE
Diversity of the fungal community on mango associated with stem end rot and anthracnose diseases based on amplicon targeted metagenomics
More details
Hide details
1
Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
2
Galasari Gunung Sejahtera, Gresik, East Java, Indonesia
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2023-10-14
Acceptance date: 2023-12-18
Online publication date: 2024-03-06
Corresponding author
Ani Widiastuti
Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
Journal of Plant Protection Research 2024;64(1):42-51
HIGHLIGHTS
- Fungal community associated to stem end rot is different from anthracnose disease.
- Class Basidiomycota was predominant in the healthy fruits
- Class Ascomycota was predominantly found in the sick fruits
- Lasiodiplodia, Neofusicoccum were found in stem end rot mango
- Colletotrichum was found in the anthracnose symptom and not in the stem end rot
KEYWORDS
TOPICS
ABSTRACT
This study aimed to comprehend the diversity of the fungal community on Chokanan
mango, a premium mango variety from Thailand which is widely cultivated in Indonesia,
associated with stem end rot and anthracnose disease using high-throughput amplicon
targeted metagenomics analysis by next-generation sequencing (NGS). Samples used in
this study were freshly harvested healthy fruits at the age of 15-weeks (H15.ITS), healthy
fruits after 2 weeks incubation (H17.ITS), 17-week old fruits (S17.ITS) with stem end rot
symptoms, and 17-week old fruits (A17.ITS) with anthracnose symptoms. Results showed
that the Basidiomycota phylum was dominant in the healthy fruits, while the Ascomycota
phylum was found dominantly in sick fruits. Based on OTUs alignment of sequenced data,
some species found to be dominantly associated with stem end rot disease in this study
were Lasiodiplodia theobromae, Neofusicoccum cordaticola and N. mangiferae. Dominant
species which were associated with mango anthracnose disease were Colletotrichum gloeosporioides,
Botryosphaeria corticis, Volutella sp., and Pseudofusicoccum violacearum. These
fungal genera were not found to be dominant in healthy fruits at the same age indicating
that specific genera contributed to developing postharvest diseases on mango differently.
The findings confirmed that the fungal community associated with stem end rot and anthracnose
disease on mango was unique, and specific species contributed in particular disease
development. Since mango is an important global commodity, these research findings
will contribute significantly to global biosecurity.
ACKNOWLEDGEMENTS
The authors express their sincere gratitude to Galasari
Gunung Sejahtera, a subsidiary company of Polowijo
Gosari Indonesia Holding which supplied the fruit
samples of Chokanan Mango for this research.
FUNDING
The research
was financially supported by a National Grant
of Basic Research on University 2023 (Penelitian Dasar
Unggulan Perguruan Tinggi/PDUPT 2023) Ministry
of Education, Culture, Research, and Technology,
Indonesia with contract number 018/E5/PG.02.00.
PL/2023 – 2142/UN1/DITLIT/DitLit/PT.01.03/2023.
RESPONSIBLE EDITOR
Sebastian Stenglein
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (34)
1.
Azhar M.H., Mohd Asrul S., Johari S., Tengku A.B., Malik T.M. 2013. Variation study on morphological characters among Magnifera indica L. ‘Chokanan’ for development of superior mango clone. Acta Horticulturae 1012: 305–313. DOI:
https://doi.org/10.17660/ActaH....
2.
Benatar G.V., Wibowo A., Suryanti. 2021. First report of Colletotrichum asianum associated with mango fruit anthracnose in Indonesia. Crop Protection 141: 105432. DOI:
https://doi.org/10.1016/j.crop....
3.
Bokulich N.A., Subramanian S., Faith J.J., Gevers D., Gordon J.I., Knight R., Mills D.A., Caporaso J.G. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods 10 (1): 57–59. DOI:
https://doi.org/10.1038/nmeth.....
4.
Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Peña A.G., Goodrich J.K., Gordon J.I., Huttley G.A., Kelley S.T., Knights D., Koenig J.E., Ley R.E., Lozupone C.A., McDonald D., Muegge B.D., Pirrung M., Reeder J., Sevinsky J.R., Turnbaugh P.J., Walters W.A., Widmann J., Yatsunenko T., Zaneveld J., Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7 (5): 335–336. DOI:
https://doi.org/10.1038/nmeth.....
5.
Deng Z.S., Liu X.D., Zhang B.C., Jiao S., Qi X.Y., Sun Z.H., He X.L., Liu Y.Z., Li J., Chen K.K., Lin Z.X., Jiang Y.Y. 2019. The root endophytic fungi community structure of Pennisetum sinese from four representative provinces in China. Microorganisms 7 (9): 332. DOI:
https://doi.org/10.3390/microo....
6.
Diskin S., Oleg F., Dalia M., Samir D., Dov P., Noam A. 2017. Microbiome alterations are correlated with occurrence of postharvest stem-end rot in mango Fruit. Pythobiome Journal 1: 117–127. DOI:
https://doi.org/10.1094/PBIOME....
7.
Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32 (5): 1792–1797. DOI:
https://doi.org/10.1093/nar/gk....
8.
Edgar R.C., Hass B.J., Clemente J.C., Quince C., Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 (16): 2194–2200. DOI:
https://doi.org/10.1093/bioinf....
11.
Fan X.L., Barreto R.W., Groenewald J.Z., Bezerra J.DP., Pereira O.L., Cheewangkoon R., Mostert L., Tian C.M., Crous P.W. 2017. Phylogeny and taxonomy of the scab and spot anthracnose fungus Elsinoë (Myriangiales, Dothideomycetes). Studies in Mycology 87: 1–41. DOI:
https://doi.org/10.1016/j.simy....
13.
Galsurker O., Diskin S., Duanis-Assaf D., Doron-Faigenboim A., Maurer D., Feygenberg O., Alkan N. 2020. Harvesting mango fruit with a short stem-end altered endophytic microbiome and reduce stem-end rot. Microorganisms 8: 558. DOI:
https://doi.org/10.3390/microo....
14.
Kanti A., Sumerta I.N. 2016. Diversity of xylose assimilating yeast from the island of Enggano, Sumatera, Indonesia. Berita Biologi 15 (3): 207–215. DOI:
https://doi.org/10.14203/berit....
15.
Kee Y.J., Zakaria L., Mohd M.H. 2020. Curvularia asianensis and Curvularia eragrostidis associated with leaf spot of Sansevieria trifasciata in Malaysia. Journal of Phytopathology 168 (5): 290–296. DOI:
https://doi.org/10.1111/jph.12....
16.
Kiloes A.M., Muflikh Y.N., Joyce D., Ammar A.A. 2023. Understanding the complexity of the Indonesian fresh mango industry in delivering quality to markets: A systems thinking approach. Food Policy 118: 102497. DOI:
https://doi.org/10.1016/j.food....
17.
Kõljalg U., Nilsson R.H., Abarenkov K., Tedersoo L., Taylor A.F., Bahram M., Bates S.T., Bruns T.D., Bengtsson-Palme J., Callaghan T.M., Douglas B., Drenkhan T., Eberhardt U., Dueñas M., Grebenc T., Griffith G.W., Hartmann M., Kirk P.M., Kohout P., Larsson E., Lindahl B.D., Lücking R., Martín M.P., Matheny P.B., Nguyen N.H., Niskanen T., Oja J., Peay K.G., Peintner U., Peterson M., Põldmaa K., Saag L., Saar I., Schüßler A., Scott J.A., Senés C., Smith M.E., Suija A., Taylor D.L., Telleria M.T., Weiss M., Larsson K.H. 2013. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology 22 (21): 5271–5277. DOI:
https://doi.org/10.1111/mec.12....
18.
Li Q., Bu J., Shu J., Yu Z., Tang L., Huang S., Guo T., Mo J., Luo S., Solangi G.S., Hsiang T. 2019. Colletotrichum species associated with mango in southern China. Scientific Reports 9 (1): 18891. DOI:
https://10.1038/s41598-019-548....
19.
Lim L., Mohd M.H., Zakaria L. 2019. Identification and pathogenicity of Diaporthe species associated with stem-end rot of mango (Mangifera indica L.). European Journal of Plant Pathology 155: 687–696. DOI:
https://doi.org/10.1007/s10658....
20.
Lee H., Park J.Y., Wisitrassameewong K., Kim M.J., Park M.S., Kim N.K., Lee J.K., Lim Y.W. 2018. First report of eight milkcap species belonging to Lactarius and Lactifluus in Korea. Mycobiology. 46 (1): 1–12. DOI:
https://doi.org/10.1080/122980....
21.
Lozupone C., Lladser M.E., Knights D., Stombaugh J., Knight R. 2011. UniFrac: an effective distance metric for microbial community comparison. The ISME Journal 5: 169–172. DOI:
https://doi.org/10.1038/ismej.....
22.
Lu M., Yang Z., Ma L., Li Q., Huang S., Tang L., Guo T., Mo J., Hsianget T. 2022. First report of postharvest anthracnose of mango fruit caused by Colletotrichum plurivorum in China. Journal of Plant Pathology 104: 839–840. DOI:
https://doi.org/10.1007/s42161....
23.
Maldonado-Celis M.E., Yahia E.M., Bedoya R., Landázuri P., Loango N., Aguillón J., Restrepo B., Guerrero Ospina J.C. 2019. Chemical composition of Mango (Mangifera indica L.) fruit: nutritional and phytochemical compounds. Frontiers in Plant Science 10: 1073. DOI:
https://doi.org/10.3389/fpls.2....
24.
Magoč T., Salzberg S.L. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27 (21): 2957–2963. DOI:
https://doi.org/10.1093/bioinf....
25.
Puspitasari D. 2023. Promising indonesian mango export opportunities. Ministry of Agriculture, Republic Indonesia. [Available on:
https://hortikultura.pertanian...] [Accessed: 28 October 2023].
26.
Ranjard L., Poly F., Lata J.C., Mougel C., Thioulouse J., Nazaret S. 2001. Characterization of bacterial and fungal soil communities by automated ribosomal intergenic spacer analysis fingerprints: biological and methodological variability. Applied and Environmental Microbiology 67 (10): 4479–4487. DOI:
https://doi.org/10.1128/AEM.67....
27.
Rezgui A., Vallance J., Ghnaya-Chakroun A.B., Bruez E., Dridi M., Demasse R.D., Rey P., Sadfi-Zouaoui N. 2018. Study of Lasidiodiplodia pseudotheobromae, Neofusicoccum parvum and Schizophyllum commune, three pathogenic fungi associated with the grapevine trunk diseases in the north of Tunisia. European Journal of Plant Pathology 152: 127–142. DOI:
https://doi.org/10.1007/s10658....
28.
Pinto C., Pinho D., Sousa S., Pinheiro M., Egas C., Gomes A.C. 2014. Unravelling the diversity of grapevine microbiome. PLoS ONE 9 (1): e85622. DOI:
https://doi.org/10.1371/journa....
29.
Puig A.S., Winterstein M.C. 2021 Neofusicoccum batangarum causing dieback of mango (Mangifera indica) in Florida. Agriculture 11: 853. DOI:
https://doi.org/10.3390/agricu....
31.
Taylor M.W., Tsai P., Anfang N., Ross H.A., Goddard M.R. 2014. Pyrosequencing reveals regional differences in fruit‐associated fungal communities. Environtal Microbiology 16: 2848–2858. DOI:
https://doi.org/10.1111/1462-2....
32.
Tovar-Pedraza J.M., Mora-Aguilera J.A., Nava-Díaz C., Lima N.B., Michereff S.J., Sandoval-Islas J.S., Câmara M.P.S., Téliz-Ortiz D., Leyva-Mir S.G. 2020. Distribution and pathogenicity of Colletotrichum species associated with mango anthracnose in Mexico. Plant Disease 104: 137–146. DOI:
https://doi.org/10.1094/PDIS-0....
33.
Uddin, M.N., Shefat, S.H.T., Afroz, M., Moon, N.J. 2018. Management of anthracnose disease of mango caused by Colletotrichum gloeosporioides: a review. Acta Scientific Agriculture 2: 169–177.
34.
Widiastuti A., Suryanti, Giovanni A.C.., Santika IA., Paramita N.R. 2023. Fungal community associated with mixed infection of anthracnose and stem end rot diseases in Chokanan Mango. Biodiversitas 24: 2163–2170. DOI:
https://doi.org/10.13057/biodi....