ORIGINAL ARTICLE
 
HIGHLIGHTS
  • The presence of males increased survival of starved B. mali females on cucumber leaf platforms.
  • The addition of a substrate onto leaf platforms stimulated B. mali to hide and lay eggs in it.
  • The quality of substrates on leaf platforms deteriorated within a few days, and could be a ‘deadly’ trap for mites.
  • None of the substrates increased the lifespan of predators that died on the surface of a leaf.
KEYWORDS
TOPICS
ABSTRACT
Biological control has a special position in sustainable agriculture that requires continuous exploration and diversification in bio-agents to cope with emerging crop pests. Blattisocius mali is a promising biological control agent against some acarid mites, nematodes and moth pests. This study aimed to examine factors that could increase survival and diminish dispersal of B. mali deprived of its prey, the mold mite Tyrophagus putrescentiae, from cucumber plants. The impact of the presence of males on starving females’ lifespans and the influence of different substrates, i.e., wheat bran, dry yeast pellets, and cattail pollen, on the distribution and survival of starving females in groups with males were examined. Experiments were performed on cucumber leaf platforms in Petri dishes filled with water. The results showed that females lived longer and a lower percentage drowned in water when accompanied by males. On the platforms with the addition of a substrate, the mites mainly stayed within the substrate, and eggs were only recorded in the substrate. They clearly preferred bran over pollen or pollen + yeast pellet aggregations. However, the quality of the substrate deteriorated within the first days, and some mites died of entrapment in the substrates. On the 3rd day, the lowest mean percentage of live individuals was observed on platforms with yeast + pollen (54.4%) followed by pollen (68.9%) alone. At that time, females also stopped laying eggs, and cannibalism towards hatched larvae and adults was observed. By the end of the experiment, 54.67% of the mites had been found dead on the leaf surface, and none of the substrates had significantly influenced their lifespan. The females lived on average 8.19 days and the males 5.06 days. The obtained results are discussed in the context of potential application of B. mali in biological control strategies.
ACKNOWLEDGEMENTS
We would like to thank Prof. W. Wakuliński for his valuable suggestions and H. Załęska for her assistance during the study.
RESPONSIBLE EDITOR
Renata Dobosz
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (62)
1.
Abad-Moyano R., Urbaneja A., Schausberger P. 2010. Intraguild interactions between Euseius stipulatus and the candidate biological control agents of Tetranychus urticae in Spanish clementine orchards: Phytoseiulus persimilis and Neoseiulus californicus. Experimental and Applied Acarology 50 (1): 23–34. DOI: https://doi.org/10.1007/s10493....
 
2.
Amal A.A., Yassin E.M.A., El-Bahrawy A.F., El-Sharabasy H.M., Kamel M.S. 2020. Biology of Blattisocius mali (Oudemans) (Acari: Gamasida: Ascidae) feeding on different diets under laboratory conditions. Egyptian Veterinary Medical Society of Parasitology Journal 16: 92–101. DOI: https://doi.org/10.21608/EVMSP....
 
3.
Asgari F., Safavi S.A., Moayeri H.R.S. 2022. Life table parameters of the predatory mite, Blattisocius mali Oudemans (Mesostigmata: Blattisociidae), fed on eggs and larvae of the stored product mite, Tyrophagus putrescentiae (Schrank). Egyptian Journal of Biological Pest Control 32 (1): 118. DOI: https://doi.org/10.1186/s41938....
 
4.
Barker P.S. 1967. Bionomics of Blattisocius keegani (Fox)(Acarina: Ascidae), a predator on eggs of pests of stored grains. Canadian Journal of Zoology 45 (6): 1093-1099. DOI: https://doi.org/10.1139/z67-11....
 
5.
Beretta G.M., Deere J.A., Messelink G.J., Muñoz-Cárdenas K., Janssen A. 2022. Review: predatory soil mites as biocontrol agents of above- and below-ground plant pests. Experimental and Applied Acarology 87: 143–162. DOI: https://doi.org/10.1007/s10493....
 
6.
Çakmak I., Faraji F., Çobanoğlu S. 2011. A checklist and key to Ascoidea and Phytoseioidea (except Phytoseiidae) species of Turkey with three new species records (Acari: Mesostigmata). Turkish Journal of Entomology 35 (4): 575–586.
 
7.
Collier T., Van Steenwyk R. 2004. A critical evaluation of augmentative biological control. Biological Control 31 (2): 245–256.
 
8.
Croft B.A., Kim S.S., Kim D.I. 1995. Absorption and cannibalism: do phytoseiids conserve egg resources when prey densities decline rapidly? Experimental and Applied Acarology 19: 347–356. DOI: https://doi.org/10.1007/BF0005....
 
9.
Darst P.H., King E.W. 1969. Biology of Melichares tarsalis in association with Plodia interpunctella. Annals of the Entomological Society of America 62: 747–749.
 
10.
Dergachev D.V. 1998. Sposob Biologicheskoy Bor’by s Tiroglifoidnymi Kleshchami [The Method of the Biological Control of Tyroglyphid Mites]. Russian Patent RU2105472C1, 28 February 1998.
 
11.
Engqvist L. 2006. Females benefit from mating with different males in the scorpionfly Panorpa cognata. Behavioral Ecology 17 (3): 435–440. DOI: https://doi.org/10.1093/beheco....
 
12.
Esteca F.C.N., Rodrigues L.R., De Moraes G.J., Júnior I.D., Klingen I. 2018. Mulching with coffee husk and pulp in strawberry affects edaphic predatory mite and spider mite densities. Experimental and Applied Acarology 76 (2): 161–183. DOI: https://doi.org/10.1007/s10493....
 
13.
Gallego J.R., Gamez M., Cabello T. 2020. Potential of the Blattisocius mali mite (Acari: Blattisociidae) as a biological control agent of potato tuber moth (Lepidoptera: Gelechiidae) in stored potatoes. Potato Research 63: 241–251. DOI: https://doi.org/10.1007/s11540....
 
14.
Ghazy N.A., Osakabe M., Negm M.W., Schausberger P., Gotoh T., Amano H. 2016. Phytoseiid mites under environmental stress. Biological Control 96: 120-134. DOI: https://doi:10.1016/j.biocontr....
 
15.
Goenaga J., Mensch J., Fanara J.J., Hasson E. 2012. The effect of mating on starvation resistance in natural populations of Drosophila melanogaster. Evolutionary Ecology 26: 813–823. DOI: https://doi.org/10.1007/s10682....
 
16.
Haines C.P. 1981. Laboratory studies on the role of an egg predator, Blattisocius tarsalis (Berlese) (Acari: Ascidae), in relation to the natural control of Ephestia cautella (Walker) (Lepidoptera: Pyralidae) in warehouses. Bulletin of Entomological Research 71 (4): 557–574. DOI: https://doi.org/10.1017/S00074....
 
17.
Huang H., Xu X., Lv J., Li G., Wang E., Gao Y. 2013. Impact of proteins and saccharides on mass production of Tyrophagus putrescentiae (Acari: Acaridae) and its predator Neoseiulus barkeri (Acari: Phytoseiidae) Biocontrol Science and Technology 23 (11): 1231–1244. DOI: https://doi.org/10.1080/095831....
 
18.
Hughes A.M. 1976. The mites of stored food and houses. Vol. 9. 2nd Edition. Technical Bulletin of the Ministry of Agriculture, Fisheries and Food. 2nd ed. Her Majesty’s Statery Office, London, UK 400 pp.
 
19.
Itisha Gulati R., Anita Manoj 2017. Damage potential of Tyrophagus putrescentiae Schrank (Acari: Acaridae) in mushrooms. Emergent Life Sciences Research 3 (2): 6–15.
 
20.
Jin M.R., Xin T.R., Zheng Z.H., Zhang C., Huang X.Y., Li Z.Z., Liu Y.M., Wang J., Zou Z.W., Xia B. 2023. Yeast in addition to pollen enhances the reproduction of the predatory mite Euseius nicholsi by increasing the target of rapamycin gene expression. Biological Control 177: 105101. DOI: https://doi.org/10.1016/j.bioc....
 
21.
Karg W. 1971. Acari (Acarina), Milben, Unterordnung Anactinochaeta (Parasitiformes): Die freilebenden Gamasina (Gamasides), Raubmilben. Die Tierwelt Deutschlands und der angrenzenden Meeresteile, 59. VEB Gustav Fischer Verlag, Jena, Germany, 475 pp.
 
22.
Kasuga S., Kanno H., Amano H. 2006. Development, oviposition, and predation of Hypoaspis aculeifer (Acari: Laelapidae) feeding on Tyrophagus similis (Acari: Acaridae). Journal of Acarological Society of Japan 15 (2): 139–143. DOI: https://doi.org/10.2300/acari.....
 
23.
Kumar V., Xiao Y., McKenzie L.C., Osborne L.S. 2015. Early establishment of the phytoseiid mite Amblyseius swirskii (Acari: Phytoseiidae) on pepper seedlings in a Predator-in-First approach. Experimental and Applied Acarology 65: 465–481. DOI: https://doi.org/10.1007/s10493....
 
24.
Kuwahara Y., Ishii S., Fukami H. 1975. Neryl formate, alarm pheromone of the cheese mite, Tyrophagus putrescentiae (Acarina: Acaridae). Experientia 31: 1115–1116. DOI: https://doi.org/10.1007/BF0232....
 
25.
Lobbes P., Schotten C. 1980. Capacities of increase of the soil mite Hypoaspis aculeifer Canestrini (Mesostigmata: Laelapidae). Zeitschrift für Angewandte Entomologie 90: 9–22. DOI: https://doi.org/10.1111/j.1439....
 
26.
McMurtry J.A., Sourassou N.F., Demite P.R. 2015.The Phytoseiidae (Acari: Mesostigmata) as biological control agents. p. 133–149. In: “Prospects for Biological Control of Plant Feeding Mites and Other Harmful Organisms” (D. Carrillo, G. J. de Moraes, J. E. Peña, eds.). Springer, Cham, 328 pp. DOI: https://doi.org/10.1007/978-3-....
 
27.
Messelink G.J., van Holstein-Saj R. 2006. Potential for biological control of the bulb scale mite (Acari: Tarsonemidae) by predatory mites in amaryllis. Proceedings of the Netherland Entomological Society Meeting 17: 113–118.
 
28.
Michalska K., Jena M.K., Mrowińska A., Nowakowski P., Maciejewska D., Ziółkowska K., Studnicki M., Wit M. 2023a. Preliminary studies on the predation of the mite Blattisocius mali (Acari: Blattisociidae) on various life stages of spider mite, thrips and fruit fly. Insects 14 (9): 747. DOI: https://doi.org/10.3390/insect....
 
29.
Michalska K., Mrowińska A., Studnicki M., Jena M.K. 2023b. Feeding behaviour of the mite Blattisocius mali on eggs of the fruit flies Drosophila melanogaster and D. hydei. Diversity 15: 652. DOI: https://doi.org/10.3390/d15050....
 
30.
Midthassel A., Leather S., Wright D.J., Baxter I.H., Farman D.I., Cork A. 2016. An astigmatid defence volatile against a phytoseiid mite. Entomologia Experimentalis et Applicata 158 (1): 97–107. DOI: https://doi.org/10.1111/eea.12....
 
31.
Momen F.M. 2010. Intra- and interspecific predation by Neoseiulus barkeri and Typhlodromus negevi (Acari: Phytoseiidae) on different life stages: Predation rates and effects on reproduction and juvenile development. Acarina 18 (1): 81–88.
 
32.
Muñoz-Cárdenas K. 2017. What lies beneath? Linking litter and canopy food webs to protect ornamental crops. [Available on: https://pure.uva.nl/ws/files/1...] [Assessed: November 2023].
 
33.
Murillo P., Arias J., Aguilar H. 2021. First record and verification of Tyrophagus putrescentiae (Acari: Acaridae) causing direct damage on anthurium plants cultivated in vitro. Systematic and Applied Acarology 26 (11): 2048–2058. DOI: https://doi.org/10.11158/saa.2....
 
34.
Nakao H. 1991. Studies on acarid mites (Acari: Astigmata); damaging vegetable plants. Japanese Journal of Applied Entomology and Zoology 35 (4): 303–309.
 
35.
Navarro-Campos C., Wäckers F.L., Pekas A. 2016. Impact of factitious foods and prey on the oviposition of the predatory mites Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae). Experimental and Applied Acarology 70: 69–78. DOI: https://doi.org/10.1007/s10493....
 
36.
Palevsky E. 2016. Pollen provisioning for the promotion of biological control by omnivorous phytoseiids in organic greenhouses. In III International Symposium on Organic Greenhouse Horticulture 1164: 383–390.
 
37.
Pappas M.L., Broufas G.D., Koveos D.S. 2007. Effect of mating frequency on fecundity and longevity of the predatory mite Kampimodromus aberrans (Acari: Phytoseiidae). Experimental and Applied Acarology 43: 161–170. DOI: https://doi.org/10.1007/s10493....
 
38.
Pasquier A., Monticelli L.S., Moreau A., Kaltenbach B., Chabot C., Andrieux T., Ferrero M., Vercken E.A. 2021. Promising predator-in-first strategy to control western corn rootworm population in maize fields. Agronomy 11 (10): 1984. DOI: https://doi.org/10.3390/agrono....
 
39.
Pirayeshfar F., Moayeri H.R.S., Da Silva G.L.A., Ueckermann E. 2022. Comparison of biological characteristics of the predatory mite Blattisocius mali (Acari: Blattisocidae) reared on frozen eggs of Tyrophagus putrescentiae (Acari: Acaridae) alone and in combination with cattail and olive pollens. Systematic and Applied Acarology 27 (3): 399. DOI: https://doi.org/10.11158/saa.2....
 
40.
Pirayeshfar F., Safavi S.A., Moayeri H.R.S., Messelink G.J. 2021. Active and frozen host mite Tyrophagus putrescentiae (Acari: Acaridae) influence the mass production of the predatory mite Blattisocius mali (Acari: Blattisociidae): life table analysis. Systematic and Applied Acarology 26 (11): 2096–2108. DOI: https://doi.org/10.11158/saa.2....
 
41.
R Core Team. 2023. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [Available on: https://www.R-project.org/] [Assessed: November 2023].
 
42.
Ragusa S., Zedan M.A., Sciacchitano M.A. 1989. The effects of food from plant and animal sources on the development and egg production of the predaceous mite Hypoaspis aculeifer (Canestrini) (Parasiti- formes, Dermanyssidae). Redia 69: 481–488.
 
43.
Rivard I. 1960. A Technique for individual rearing of the predacious mite Melichares dentriticus (Berlese) (Acarina: Aceosejidae) with notes on its life history and behaviour. The Canadian Entomologist 92 (11): 834–839.
 
44.
San P.P., Tuda M., Takagi M. 2021. Impact of relative humidity and water availability on the life history of the predatory mite Amblyseius swirskii. BioControl 66: 497–510. DOI: https://doi.org/10.1007/s10526....
 
45.
Sanderson J.P., McMurtry J.A. 1984. Life history studies of the predaceous mite Phytoseius hawaiiensis. Entomologia Experimentalis et Applicata 35: 227–234. DOI: https://doi.org/10.1111/j.1570....
 
46.
Sarwar M. 2016. Comparative life history characteristics of the mite predator Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae) on mite and pollen diets. International Journal of Pest Management 62: 140-148. DOI: 10.1080/09670874.2016.1146806.
 
47.
Shimoda T., Kagawa Y., Mori K., Hinomoto N., Hiraoka T., Naka- jima T. 2017. A novel method for protecting slow-release sachets of predatory mites against environmental stresses and increasing predator release to crops. BioControl 62: 495–503. DOI: https://doi.org/10.1007/s10526....
 
48.
Shimoda T., Kagawa Y., Yoshizawa H., Nakano A., Matsuhira K., Yanagita H., Shimomoto M., Adachi-Hagimori T., Mori K., Hinomoto N., Hiraoka T., Nakajima T. 2019. Moisturized sheltered sachets are potentially useful for the efficient release of selected predators in a wide range of humidity environments. BioControl 64: 65–75. DOI: https://doi.org/10.1007/s10526....
 
49.
Shimoda T., Yoshitake Kagawa Y., Yara K., Uesugi R. 2023. Influence of temperature on the release of predatory mites from breeding and sheltered sachets. BioControl: 1–11. DOI: https://doi.org/10.1007/s10526....
 
50.
Solano-Rojas Y., Gallego J.R., Gamez M., Lopez I., Castillo P., Cabello T. 2022. Effect of relative humidity on the population dynamics of the predator Amblyseius swirskii and its prey Carpoglyphus lactis in the context of slow-release sachets for use in biological control in greenhouses. Plants 11 (19): 2493. DOI: https://doi.org/10.3390/plants....
 
51.
Toyoshima S., Michalik P., Talarico G., Klann A.E., Alberti G. 2009. Effects of starvation on reproduction of the predacious mite Neoseiulus californicus (Acari: Phytoseiidae). Experimental and Applied Acarology 47: 235–247. DOI: https://doi.org/10.1007/s10493....
 
52.
Tsuchida Y., Masui S., Kasai A. 2022. Effects of intraguild predation and cannibalism in two generalist phytoseiid species on prey density of the pink citrus rust mite in the presence of high‐quality food. BioControl 67: 287–296. DOI: https://doi.org/10.1007/s10526....
 
53.
van Lenteren J.C., Bolckmans K., Kohl J., Ravensberg W.J., Urbaneja A. 2018. Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63: 39–59. DOI: https://doi.org/10.1007/s10526....
 
54.
Vila E., Cabello T. 2014. Biosystems engineering applied to greenhouse pest control. p. 99–128. In: “Biosystems Engineering: Biofactories for Food Production in the XXI Century” (I.Torres, R. Guevara, eds.). Springer, Berlin, Heidelberg, Germany, 476 pp.
 
55.
von Berg K., Thies C., Tscharntke T., Scheu S. 2009. Cereal aphid control by generalist predators in presence of belowground alternative prey: complementary predation as affected by prey density. Pedobiologia 53: 41–48. DOI: https://doi.org/10.1016/j.pedo....
 
56.
Waite G.K., Gerson U. 1994. The predator guild associated with Aceria Litchii (Acari: Eriophyidae) in Australia and China. Entomophaga 39: 275–280. DOI: https://doi.org/10.1007/BF0237....
 
57.
Walzer A., Schausberger P. 2011. Threat-sensitive anti-intraguild predation behaviour: maternal strategies to reduce offspring predation risk in mites. Animal Behaviour 81 (1): 177–184. DOI: https://doi.org/10.1016/j.anbe....
 
58.
Wu S., Zhang Z., Gao Y., Xu X., Lei Z. 2016. Interactions between foliage- and soil-dwelling predatory mites and consequences for biological control of Frankliniella Occidentalis. BioControl 61: 717–727. DOI: https://doi.org/10.1007/s10526....
 
59.
Yang K., Lü J., Wang E., Xu X. 2015. Impact of additive yeast in prey diet on body size and functional responses of Neoseiulus barkeri (Acari: Phytoseiidae). Chinese Journal of Biological Control 31 (1): 28–34.
 
60.
Yano E. 2021 Augmentative biological control in greenhouses in Japan. CABI Reviews 16: 1–12. DOI: https://doi.org/10.1079/PAVSN NR202116060.
 
61.
Zhang Z.Q. 2003. Mites of greenhouses: identification, biology and control. CABI Publishing, Wallingford, UK.
 
62.
Zhang Y., Ji J., Lin J., Chen X., Saito Y. 2015. Female performance towards offspring under starved conditions in four phytoseiid species (Acari, Phytoseiidae). Experimental and Applied Acarology 65: 29-41. DOI: https://doi.org/10.1007/s10493....
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top