ORIGINAL ARTICLE
Development of the colorimetric loop-mediated isothermal amplification technique for rapid and sensitive detection of chrysanthemum stunt viroid in chrysanthemum
More details
Hide details
1
Division of Plant Pathology, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
2
Plant Protection Center, Royal Project Foundation, Chiang Mai, Thailand
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2022-05-03
Acceptance date: 2022-07-25
Online publication date: 2022-08-25
Corresponding author
On-Uma Ruangwong
Division of Plant Pathology, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University,
Chiang Mai, Thailand
Journal of Plant Protection Research 2022;62(3):272-280
HIGHLIGHTS
- Colorimetric LAMP could detect CSVd within 45 min by incubation at 65 degree celsius.
- The results of detection were easily distinguished by visualization of color change from pink to yellow in a positive reaction.
- Limits of the detection of colorimetric LAMP were up to 1 fg/ul of CSVd plasmid DNA.
- Colorimetric LAMP was specific to only CSVd.
- Evaluation of colorimetric LAMP was conducted to detect CSVd from chrysanthemum.
KEYWORDS
TOPICS
ABSTRACT
Chrysanthemum stunt viroid (CSVd) is a serious pathogen infecting chrysanthemum
worldwide. To improve and enhance the detection procedure, a colorimetric loop-mediated
isothermal amplification (LAMP) technique was developed. Six LAMP primers
were newly designed and tested to determine the optimal conditions using a recombinant
plasmid of CSVd as a DNA template. The optimal conditions for colorimetric LAMP were
incubation at 65°C for 45 min. Under these conditions, a ladder-like pattern of LAMP
products was detected along with a change of color from pink to yellow in the positive
reactions. Limits of the detection (LOD) of colorimetric LAMP were up to 1 fg ∙ μl–1 of
plasmid DNA concentration which was 104 times greater than that of polymerase chain
reaction (PCR). The developed colorimetric LAMP was not cross reacted to other viruses
and viroids. From detection of actual samples and chrysanthemum plantlets which were
obtained from meristem tip culture, the colorimetric LAMP showed effective potential in
detecting CSVd. Therefore, the colorimetric LAMP can be used as a main technique to detect
CSVd and ensure CSVd-free chrysanthemum plantlet production due to its accuracy,
rapidness and sensitivity.
FUNDING
This research work was supported by Royal Project
Foundation (Grant No. 3060-A149) and Thailand
Graduate Institute of Science and Technology (TGIST)
(Grant No. SCA-C0-2562-9705-TH).
RESPONSIBLE EDITOR
Julia Minicka
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (37)
1.
Almasi M.A. 2017. Development of a colorimetric reverse transcription loop-mediated isothermal amplification assay for the detection of mirafiori lettuce big-vein virus. Archives of Virology 162 (9): 2775–2880. DOI:
http://doi.org/10.1007/s00705-....
2.
Bester R., Maree H.J. 2022. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of plum viroid I (PlVd-I). Journal of Virological Methods 306: 114543. DOI:
https://doi.org/10.1016/j.jvir....
3.
Bhuvitarkorn S., Klinkong S., Reanwarakorn K. 2019. Enhancing columnea latent viroid detection using reverse transcription loop-mediated isothermal amplification (RT-LAMP). International Journal of Agricultural Technology 15 (2): 215–228.
4.
Camps R., Mansur L., De la Cuadra C., Besoain X. 2015. First report of turnip mosaic virus (TuMV) infecting Leucocoryne purpurea (Amaryllidaceae) in Chile. Plant Disease 100 (11): 2341. DOI:
https://doi.org/10.1094/PDIS-0....
5.
Chen S., Gu H., Wang X., Chen J., Zhu W. 2011. Multiplex RT-PCR detection of cucumber mosaic virus subgroups and tobamoviruses infecting tomato using 18S rRNA as an internal control. Acta Biochimica et Biophysica Sinica 43: 465–471. DOI:
https://doi.org/ 10.1093/abbs/gmr031.
6.
Cho W.K., Jo Y., Jo K.M., Kim K.H. 2013. A current overview of two viroids that infect chrysanthemums: chrysanthemum stunt viroid and chrysanthemum chlorotic mottle viroid. Viruses 5: 1099–1113. DOI:
https://doi.org/10.3390/v50410....
7.
Chung B.N., Huh E.J., Kim J.S. 2006. Effect of temperature on the concentration of chrysanthemum stunt viroid in CSVd-infected chrysanthemum. The Plant Pathology Journal 22 (2): 152–154. DOI:
https://doi.org/10.3389/fmicb.....
9.
Ding B., Itaya A. 2007. Viroids: a useful model for studying the basic principle of infection and RNA biology. Molecular Plant-Microbe Interaction 20: 7–20. DOI:
https://doi.org/10.1094/MPMI-2....
10.
Doi M., Kato K. 2004. Nucleotide sequence of chrysanthemum stunt viroid (CSVd) occurred in Shizuoka Prefecture and symptoms of chrysanthemum cultivar. Annual Report of The Kansai Plant Protection Society 46: 11–14.
11.
Ebata M., Matsushita Y., Morimoto M., Mochizuki T. 2019. Distribution of chrysanthemum chlorotic mottle viroid in shoot meristem and flower buds of chrysanthemum. European Journal of Plant Pathology 154: 555–563. DOI:
https://doi.org/10.1007/s10658....
12.
Fukuta S., Ohishi K., Yoshida K., Mizukami Y., Ishida A., Kanbe M. 2004. Development of immunocapture reverse transcription loop-mediated isothermal amplification for the detection of tomato spotted wilt virus from chrysanthemum. Journal of Virological Methods 121 (1): 49–55. DOI:
https://doi.org/10.1016/j.jvir....
13.
Gobatto D., de Oliveira L.A., Franco D.A.S., Velasquez N., Daros J.A., Eiras M. 2019. Surveys in the chrysanthemum production areas of Brazil and Colombia reveal that weeds are potential reservoirs of chrysanthemum stunt viroid. Viruses 11 (4): 355. DOI:
https://doi.org/10.3390/v11040....
14.
Guan Z., Wu D., Song A., Chen F., Chen S., Fang W. 2017. A highly sensitive method for the detection of chrysanthemum virus B. Electronic Journal of Biotechnology 26: 64–68. DOI:
https://doi.org/10.1016/j.ejbt....
15.
Hasiów-Jaroszewska B., Borodynko N. 2013. Detection of Pepino mosaic virus isolates from tomato by one-step reverse transcription loop-mediated isothermal amplification. Archives of Virology 158 (10): 2153–2156. DOI:
https://doi.org/10.1007/s00705....
16.
Haseloff J., Symons R. 1981. Chrysanthemum stunt viroid: primary sequence and secondary structure. Nucleic Acids Research 9 (12): 2741–2752. DOI:
https://doi.org/10.1093/nar/9.....
17.
Horst R.K., Langhans R.W., Smith S.H. 1977. Effects of chrysanthemum stunt, chlorotic mottle, aspermy and mosaic on flowering and rotting of chrysanthemums. Phytopathology 67: 9–14.
18.
Hosokawa M., Otake A., Ohishi K., Ueda E., Hayashi T., Yazawa S. 2004. Elimination of chrysanthemum stunt viroid from an infected chrysanthemum cultivar by shoot regeneration from a leaf primordium-free shoot apical meristem dome attached to a root tip. Plant Cell Reports 22 (11): 859–863. DOI:
https://doi.org/10.1007/s00299....
19.
Jeong J.J., Ju H.J., Noh J. 2014. A review of detection methods for the plant viruses. Research in Plant Disease 20 (3): 173–181. DOI:
http://dx.doi.org/10.5423/RPD.....
20.
Katoh H., Fukuda T., Nishigawa H., Natsuaki T. 2016. Rapid detection of Colletotrichum gloeosporioides in infected strawberry plants using loop-mediated isothermal amplification. Journal of General Plant Pathology 82 (4): 190–198. DOI:
https://doi.org/10.1007/s10327....
21.
Koh R.B.L., Barbosa C.F.C., Aquino V.M., Galvez L.C. 2020. Rapid, simple detection of banana bract mosaic virus in abaca using a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay. Journal of General Plant Pathology 86: 433–441. DOI:
https://doi.org/10.1007/s10327....
22.
Kumar S., Shankar A.S.U., Nayaka S.C., Lund O.S., Prakash H.S. 2011. Detection of tobacco mosaic virus and tomato mosaic virus in pepper and tomato by multiplex RT-PCR. Letters in Applied Microbiology 53 (3): 359–363. DOI:
https://doi.org/10.1111/j.1472....
23.
Liu X.L., Zhao X.T., Muhammad I., Ge B.B., Hong B. 2014. Multiplex reverse transcription loop-mediated isothermal amplification for the simultaneous detection of CVB and CSVd in chrysanthemum. Journal of Virological Methods 210: 26–31. DOI:
https://doi.org/10.1016/j.jvir....
24.
Liu Z., Xia Z., Yang C., Huang J. 2016. Colorimetric detection of maize chlorotic mottle virus by reverse transcription loop-mediated isothermal amplification (RT-LAMP) with hydroxynapthol blue dye. RSC Advances 6: 73–78. DOI:
https://doi.org/10.1039/ C5RA20789D.
26.
Matsushita Y., Yanagisawa H., Khiutti A., Mironenko N., Ohto Y., Afanasenko O. 2019. First report of chrysanthemum stunt viroid variant from potato (Solanum tuberosum) plants in Russia. Journal of General Plant Pathology 85 (4): 311–313. DOI:
https://doi.org/10.1007/s10327....
27.
Nabeshima T., Doi M., Hosokawa M. 2017. Comparative analysis of chrysanthemum stunt viroid accumulation and movement in two chrysanthemum (Chrysanthemum morifolium) cultivars with differential susceptibility to the viroid infection. Frontiers in Plant Science 8: 1940. DOI:
https://doi.org/10.3389/fpls.2....
28.
Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research 28 (12): e63. DOI:
https://doi.org/10.1093/nar/28....
29.
Panno S., Matic S., Tiberini A., Caruso A.G., Bella P., Torta L., Stassi R., Davino S. 2020. Loop mediated isothermal amplification: Principles and applications in plant virology. Plants 9 (4): 461. DOI:
https://doi.org/10.3390/plants....
30.
Poole C.B., Li Z., Alhassan A., Guelig D., Diesburg S., Tanner N.A., Zhang Y., Evans Jr.T.C., LaBarre P., Wanji S., Burton R.A., Carlow C.K.S. 2017. Colorimetric tests for diagnosis of filarial infection and vector surveillance using non-instrumented nucleic acid loop-mediated isothermal amplification (NINA-LAMP). PLoS ONE. DOI:
https://doi.org/10.1371/journa....
31.
Scott A.T., Layne T.R., O’Connell K.C., Tanner N.A., Landers J.P. 020. Comparative evaluation and quantitative analysis of loop-mediated isothermal amplification indicators. Analytical Chemistry 92 (19): 13343–13353. DOI:
https://doi.org/10.1021/acs.an....
32.
Supakitthanakorn S., Vichittragoontavorn K., Kunasakdakul K., Ruangwong O. 2022a. Simultaneous and sensitive detection of CVB, CChMVd and CSVd mixed infections in chrysanthemum using multiplex nested RT-PCR. International Journal of Agricultural Technology 18 (2): 857– 870.
33.
Supakitthanakorn S., Vichittragoontavorn K., Kunasakdakul K., Thapanapongworakul P., Sunpapao A., Ruangwong O. 2022b. Tobacco mosaic virus infection of chrysanthemums in Thailand: development of colorimetric reverse-transcription loop-mediated isothermal amplification (RT-LAMP) technique for sensitive and rapid detection. Plants 11: 1788. DOI:
https://doi.org/10.3390/plants....
34.
Suzaki K., Sawada H., Kisaki G. 2022. Loop‐mediated isothermal amplification of bacterial effector genes to detect Pseudomonas syringae pv. actinidiae biovars 1 and 3. Journal of General Plant Pathology 88 (1): 2–9. DOI:
https://doi.org/10.1007/s10327....
35.
Tanner N.A., Zhang Y., Evans Jr.T.C. 2015. Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. Biotechniques 58 (2): 59–68. DOI:
https://doi.org/10.2144/000114....
36.
Verma N., Ram R., Hallan V., Kumar K., Zaidi A.A. 2004. Production of cucumber mosaic virus-free chrysanthemums by meristem tip culture. Journal of Crop Protection 23 (5): 469–473. DOI:
https://doi.org/10.1016/j.crop....
37.
Zalewska M., Lema-Ruminska J., Miler N. 2007. In vitro propagation using adventitious buds technique as a source of new variability in chrysanthemum. Scientia Horticulturae 113 (1): 70–73. DOI:
https://doi.org/10.1016/j.scie....