ORIGINAL ARTICLE
Developing of DNA-marker to the Fusarium oxysporum f. sp. lycopersici resistance genes of tomato
 
 
More details
Hide details
1
Department of Plant Protection, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
 
 
Corresponding author
Jahanshir Amini
Department of Plant Protection, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
 
 
Journal of Plant Protection Research 2009;49(2):175-178
 
KEYWORDS
TOPICS
ABSTRACT
Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici is a destructive disease of tomato crops worldwide. The use of resistant varieties is the best strategy for disease control. In the present study we analyze eight tomato lines and hybrids for Fusarium wilt disease resistance by polymerase chain reaction. Total genomic DNA was extracted from young leaves of three-week-old plants of tomato. Results of PCR of eight tomato lines and hybrids indicated that there are one dominant heterozygote, two recessive homozygotes and five dominant homozygotes. Also, results of polymerase chain reaction showed that it needs less time and is cheaper. Also by using this method, it is possible to determine genotype of plant (homozygote or heterozygote) without presence of the pathogen. Therefore, PCR technique was used in the identification gene I2 conferring resistance to F. oxysporum f. sp. lycopersici.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (22)
1.
Bai Y., Huang C.C., van der Hulst R., Meijer D.F., Bonnema G., Lindhout P. 2003. QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon ParviflorumG1.1601 co-localize with two qualitative powdery mildew resistance genes. Mol. Plant Microbe Interact. 16: 169–176.
 
2.
Beckman C.H. 1987. The Nature of Wilt Diseases of Plant. The American Phytopathological Society, St. Paul, MN.
 
3.
Bernatzky R., Tanksley S.D. 1986. Genetics of action-related sequences in tomato. Theor. Appl. Genet. 72: 314–324.
 
4.
Bournival B.L., Scott J.W., Vallejos C.E. 1989. An isozyme marker for resistance to race 3 of Fusarium oxysporum f. sp.lycopersiciin tomato. Theor. Appl. Genet. 78 (4): 489–494.
 
5.
Bournival B.L., Vallejoes C.E., Scott J.W. 1990. Genetic analysis of resistances to races 1 and 2 of Fusarium oxysporum. f. sp.lycopersici from the wild tomato Lycopersicon pennellii. Theor. Appl. Genet. 79 (5): 641–645.
 
6.
Flor H.H. 1971. Current status of the gene-for-gene concept. Ann. Rev. Phytopathol. 9: 275–296.
 
7.
Goodwin P.H., Annis S.L. 1991. Rapid identification of genetic variation and pathotype of Leptosphaeria maculans by random amplified polymorphic DNA assay. Appl. Environ. Microbiol. 57: 2482–2486.
 
8.
Grube R.C., Radwanski E.R., Jahn M. 2000. Comparative genetics of disease resistance within the Solanaceae. Genetics 155: 873–887.
 
9.
Guus S., John G., Jello W., Martin R., Jose G. 1998. Dissection of the Fusarium I2 Gene cluster in tomato reveals six homologs and one active gene copy. The Plant Cell 10: 1055–1068.
 
10.
Hulbert S.H., Webb C.A., Smith S.M., Sun Q. 2001. Resistance gene complexes: evolution and utilization. Ann. Rev. Phytopathol. 39: 285–312.
 
11.
Hamelin R., Ouellette G.B., Bernier L. 1993. Identification of Gremmeniela abietyna races with random amplified polymorphic DNA markers. Appl. Environ. Microbiol. 59: 1752–1755.
 
12.
Jones J.B., Jones J.P., Stall R.E., Zitter T.A. 1991. Compendium of Tomato Diseases. The APS, St. Paul, MN.Laterrot H. 1976.
 
13.
Localisation chromosomique de I2 chez la tomato controlant la resistance au pathotype 2 de Fusarium oxysporum f. sp.lycopersici. Ann. Amelior. Plant. 26: 485–491.
 
14.
McGrath D.J., Gillespie G., Vawdrey L. 1987. Inheritance of resistance to Fusarium oxysporum f. sp.Lycopersici races 2 and 3 of Lycopersicom pennellii. Aust. J. Agric. Res. 38: 729–733.
 
15.
Mes J.J., Weststeijn E.A., Herlaar F., Lambalk J.J.M., Wijbrandi J., Haring M.A., Cornelissen B.J.C. 1999. Biological and molecular characterization of Fusarium oxysporum f. sp.Lycopersici divides race 1 isolates into separate virulence groups. Phytopathology 89: 156–160.
 
16.
Ori N., Eshed Y., Paran I., Presting G., Aviv D., Tanksley S., Zamir D., Fluhr R. 1997. The I2C fa,ily from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucinerich repeat superfamily of plant resistance genes. Plant Cell 9: 521–532.
 
17.
Sarfatti M., Abu-Abied M. 1991. RFLP mapping of I1, a new locus in tomato conferring resistance against Fusarium oxysporum f. sp.Lycopersicirace 1. Theor. Appl. Genet. 82 (1): 22–26.
 
18.
Smith O.P., Peterson G.L., Beck R.J., Schaad N.W., Bonde M.R. 1996. Development of a PCR-based method for identification of Tilletia indica, causal agent of Karnal bunt of wheat. Phytopathology 86: 115–122.
 
19.
Stall R.E., Walter J.M. 1965. Selection and inheritance of resistance in tomato to isolates of races 1 and 2 of the Fusarium wilt organism. Phytopathology 55: 1213–1215.
 
20.
Stevens M.A., Rick C.M. 1986. Genetics and breeding. p. 35–109. In: “Tomato Crop” (J.G. Atherton, J. Rudich, eds.). Chapman and Hall Ltd., London.
 
21.
Tanksley S.D., Young N.D., Paterson A.H., Bonierbale M.W. 1989. RFLP mapping in plant breeding: new tools for an old science. Bio Technology 7: 257–264.
 
22.
Zhang A.W., Hartman G.L., Curio-penny B., Pedersen W.L., Becker K.B. 1999. Molecular detection of Diaporthe phaseolorumand Phomopsis longicolla from soybean seeds. Phytopathology 89: 796–804.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top