ORIGINAL ARTICLE
Current and potential distributions of most important diseases affecting Hass avocado in Antioquia Colombia
 
More details
Hide details
1
Facultad de Ciencias Agrarias, Departamento de Agronomia, Universidad Nacional de Colombia, sede Bogota, Colombia
 
2
Biodiversity Institute, The University of Kansas, Kansas, United States
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2018-11-18
 
 
Acceptance date: 2019-06-13
 
 
Online publication date: 2019-07-18
 
 
Corresponding author
Joaquín Guillermo Ramírez-Gil   

Facultad de Ciencias Agrarias sede Bogotá, Universidad Nacional de Colombia, Carrera 30 No. 45-03 Edificio 500, 111321, Bogota, Colombia
 
 
Journal of Plant Protection Research 2019;59(2):214-228
 
KEYWORDS
TOPICS
ABSTRACT
Hass avocado cultivation in Colombia has grown rapidly in area in recent years. It is being planted in marginal areas, which leads to low yields, and in many cases is related to diseases. Ecological niche modeling (ENM) can offer a view of the potential geographic and environmental distribution of diseases, and thus identify areas with suitable or unsuitable conditions for their development. The aim of the study was to assess current and potential distribution of the major diseases on Hass avocado in Colombia. Areas planted with Hass avocado in Antioquia, Colombia were sampled for diseases including the following pathogens: Phytophthora cinnamomi, Verticillium sp., Lasiodiplodia theobromae, Phytophthora palmivora, Colletotrichum gloeosporioides sensu lato, Pestalotia sp., and Capnodium sp., and one disorder hypoxia-anoxia. These pathogens were selected based on their relevance (incidence-severity) and capacity to cause damage in different tissues of avocado plants. Severity and incidence of each disease were related to environmental information from vegetation indices and topographic variables using maximum entropy modeling approaches (MaxEnt). Models were calibrated only across areas sampled, and then transferred more broadly to areas currently planted, and to potential zones for planting. Combinations of best performance and low omission rates were the basis for model selection. Results show that Hass avocado has been planted in areas highly conducive for many pathogens, particularly for Phytophthora cinnamomi and hypoxia-anoxia disorder. Ecological niche modeling approaches offer an alternative toolset for planning and making assessments that can be incorporated into disease management plans.
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
 
REFERENCES (47)
1.
Agrios G. 2005. Plant Pathology. Elsevier Academic Press. Dana Dreibelbis, London, UK, 952 pp.
 
2.
APS. 2017. Diseases of avocado (Persea americana Miller). Avalaible on: https://www.apsnet.org/publica....
 
3.
Barnett H.L., Hunter B.B. 1972. Illustrated Genera of Imperfect Fungi. Burgess Publishing Company, Minneapolis, 241 pp.
 
4.
Barve N., Barve V., Jiménez-Valverde A., Lira-Noriega A., Maher S.P., Peterson A.T., Villalobos F. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222 (11): 1810–1819. DOI: https://doi.org/10.1016/j.ecol....
 
5.
Bohlen P.J. 2006. Biological invasions: Linking the aboveground and belowground consequences. Applied Soil Ecology 32 (1): 1–5. DOI: https://doi.org/10.1016/j.apso....
 
6.
Burgess T.I., Scott J.K., Mcdougall K.L, Stukely M. J., Crane C., Dunstan W.A., Brigg F., Andjic V., Write D., Rutman T., Arentz F., Ota N., Hardy G.E. 2017. Current and projected global distribution of Phytophthora cinnamomi, one of the world’s worst plant pathogens. Global Change Biology 23 (4): 1661–1674. DOI: https://doi.org/10.1111/gcb.13....
 
7.
Cochran W. 1977. Sampling Techniques. 3rd ed. John Wiley & Sons, Inc., New York, USA, 448 pp.
 
8.
Elith J., Phillips SJ., Hastie T., Dudík M., Chee Y.E., Yates C.J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distribution 17 (1): 43–57. DOI: https://doi.org/10.1111/j.1472....
 
9.
Erwin D.C., Ribeiro O.K. 1996. Phytophthora Diseases Worldwide. Illustrated edition. American Phytopathological Society, St. Paul, Minnesota, 592 pp.
 
10.
FAO. 2014. FAOSTAT. Available on: http://www.fao.org/faostat/es/.... [Accessed: October 24, 2018].
 
11.
Galdino TV da S., Kumar S., Oliveira L.S.S., Alfenas A.C., Neven L.G., Al-Sadi A.M., Picanço M.C. 2016. Mapping global potential risk of mango sudden decline disease caused by Ceratocystis fimbriata. PLoS ONE 11: e0159450. DOI: https://doi.org/10.1371/journa....
 
12.
Gurgel-Gonçalves R., Galvão C., Costa J., Peterson A.T. 2012. Geographic distribution of chagas disease vectors in Brazil based on ecological niche modeling. Journal of Tropical Medicine: 1–15. DOI: https://doi.org/10.1155/2012/7....
 
13.
Hardham A.R., Blackman L.M. 2018. Phytophthora cinnamomi. Molecular Plant Pathology 19 (2): 260–285. DOI: https://doi.org/10.1111/mpp.12....
 
14.
Huete A., Didan K., Miura T., Rodríguez E.P., Gao X., Ferreira L.G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83 (1–2): 195–213. DOI: https://doi.org/10.1016/s0034-....
 
15.
Kluza D.A., Vieglais D.A., Andreasen J.K., Peterson A.T. 2007. Sudden oak death: geographic risk estimates and predictions of origins. Plant Pathology 56 (4): 580–587. DOI: https://doi.org/10.1111/j.1365....
 
16.
Lu J., Ehsani R., Shi Y., Castro, A.I., Wang S. 2018. Detection of multi-tomato leaf diseases (late blight, target and bacterial spots) in different stages by using a spectral-based sensor. Scientific Reports 8 (1): 2793. DOI: https://doi.org/10.1038/s41598....
 
17.
Madden L.V., Hughes G., van den Bosch F. 2017. The Study of Plant Disease Epidemics. Saint Paul: American Phytopathological Society, 432 pp. DOI: https://doi.org/10.1094/978089....
 
18.
Malhi Y., Silman M., Salinas N., Bush M., Meir P., Saatchi S. 2010. Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Global Change Biology 16 (12): 3171–3175. DOI: https://doi.org/10.1111/j.1365....
 
19.
Menge J.A., Ploetz R.C. 2003. Diseases of avocado. p. 35–71. In: Diseases of Tropical Fruit Crops (R.C. Ploetz, ed.). CABI, Wallingford, 527 pp.
 
20.
Merow C., Smith M.J., Silander J.A. 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36 (10): 1058–1069. DOI: https://doi.org/10.1111/j.1600....
 
21.
Ministerio de Agricultura y Desarrollo Rural de Colombia. 2018. Avocado chain: Indicators and Instruments (Spanish). Available on: https://sioc.minagricultura.go....
 
22.
Narouei-Khandan H.A., Harmon C.L., Harmon P., Olmstead J., Zelenev V.V., van der Werf W., van Bruggen A.H.C. 2017. Potential global and regional geographic distribution of Phomopsis vaccinii on Vaccinium species projected by two species distribution models. European Journal of Plant Pathology 148 (4): 919–930. DOI: https://doi.org/10.1007/s10658....
 
23.
Neerinckx S., Peterson A.T., Gulinck H., Deckers J., Kimaro D., Leirs H. 2010. Predicting potential risk areas of human plague for the Western Usambara Mountains, Lushoto District, Tanzania. The American Journal of Tropical Medicine and Hygiene 82 (3): 492–500. DOI: https://doi.org/10.4269/ajtmh.....
 
24.
Pearson R.G., Raxworthy C.J., Nakamura M., Townsend A.T. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34 (1): 102–117. DOI: https://doi.org/10.1111/j.1365....
 
25.
Peterson A.T. 2014. Mapping Disease Transmission Risk: Enriching Models Using Biogegraphy and Ecology. Johns Hopkins University Press, Baltimore, Meryland USA, 210 pp. DOI: 10.1353/book.36167.
 
26.
Peterson A.T. 2007. Why not why where: the need for more complex models of simpler environmental spaces. Ecological Modeling 203 (3–4): 527–530. DOI: https://doi.org/10.1016/j.ecol....
 
27.
Peterson A.T. 2006. Ecologic niche modeling and spatial patterns of disease transmission. Emerging Infectious Diseases 12: 1822–1826. DOI: 10.3201/eid1212.060373.
 
28.
Peterson A.T., Nakazawa Y. 2008. Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecology and Biogeography 17: 135–144. DOI: https://doi.org/10.1111/j.1466....
 
29.
Peterson A.T., Papeş M., Soberón J. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling 213 (1): 63–72. DOI: https://doi.org/10.1016/j.ecol....
 
30.
Peterson A.T., Scachetti-Pereira R., Hargrove W.W. 2004. Potential geographic distribution of Anoplophora glabripennis (Coleoptera: Cerambycidae) in North America. The American Midland Naturalist 151 (1): 170–178. DOI: https://doi.org/10.1674/0003-0....
 
31.
Peterson A.T., Soberón J., Anderson R., Pearson R., Martínez-Meyer E., Nakamura M., Araújo M. 2011. Ecological Niches and Geographic Distributions. Princeton University Press. 330 pp. DOI: 10.23943/princeton/9780691136868.001.0001.
 
32.
Pettorelli N. 2013. The Normalized Difference Vegetation Index. Oxford University Press, Oxford England, 69 pp. DOI: https://doi.org/10.1093/acprof....
 
33.
Phillips S.J., Anderson R.P., Schapire R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190 (3–4): 231–259. DOI: https://doi.org/10.1016/j.ecol....
 
34.
R Development Core Team. 2017. R: The R Project for Statistical Computing. Available on: https://www.r-project.org/. [Accessed: January 24, 2018].
 
35.
Ramírez-Gil J.G. 2018. Avocado wilt complex disease, implications and management in Colombia. Revista Facultad Nacional de Agronomía Medellín 71 (2): 8525–8541. DOI: https://doi.org/10.15446/rfna.....
 
36.
Ramírez-Gil J.G., Gilchrist Ramelli E., Morales Osorio J.G. 2017. Economic impact of the avocado (cv. Hass) wilt disease complex in Antioquia, Colombia, crops under different technological management levels. Crop Protection 101: 103–115. DOI: https://doi.org/10.1016/j.crop....
 
37.
Ramírez-Gil J.G., Morales J.G., Peterson A.T. 2018. Potential geography and productivity of “Hass” avocado crops in Colombia estimated by ecological niche modeling. Scientia Horticulturae 237: 287–295. DOI: https://doi.org/10.1016/j.scie....
 
38.
Ramírez-Gil J.G., Castañeda D.A., Morales J.G. 2014. Etiological studies of avocado wilt in Antioquia-Colombia (Spanish). Revista Ceres 61: 50–61. DOI: 10.1590/S0034-737X2014000100007.
 
39.
Sanclemente M.A., Schaffer B., Gil P.M., Vargas A.I., Davies, F.S. 2014. Pruning after flooding hastens recovery of floodstressed avocado (Persea americana Mill.) trees. Scientia Horticuturae 169: 27–35. DOI: https://doi.org/10.1016/j.scie....
 
40.
Saupe E.E., Barve V., Myers C.E., Soberón J., Barve N., Hensz C.M., Lira-Noriega A. 2012. Variation in niche and distribution model performance: The need for a priori assessment of key causal factors. Ecological Modelling 237: 11–22. DOI: https://doi.org/10.1016/j.ecol....
 
41.
Seifert K., Morgan-Jones G., Gams W., Kendrick B. 2011. The Genera of Hyphomycetes. CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands, 997 pp.
 
42.
Stolzy L., Zentmyer G., Klotz L., Labanauskas C. 1967. Oxygen diffusion, water, and Phytophthora cinnamomi in root decay and nutrition of avocados. American Society for Horticultural Science 90: 67–76.
 
43.
Varela S., Anderson R.P., García-Valdés R., Fernández-González F. 2014. Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37: 1084–1091. DOI: https://doi.org/10.1111/j.1600....
 
44.
Warren D.L., Glor R.E, Turelli M. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607–611. DOI: https://doi.org/10.1111/j.1600....
 
45.
White T., Bruns T., Lee S., Taylor L. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. p. 315–322. In: “PCR Protocols: A Guide to Methods and Applications” (M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White, eds.). Academic Press, San Diego, USA, 482 pp.
 
46.
Zentmyer G. 1980. Phytophthora cinnamomi and Diseases It Causes. Phytopathological Monograph, Phytopathological Society, 96 pp.
 
47.
Zentmyer G. 1984. Avocado diseases. Tropical Pest Management 30: 677–682.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top