ORIGINAL ARTICLE
Comparative evaluation of free and bound phenolic acid contents in early grains of durum wheat line for its resistance to fusarium head blight with some other sensitive varieties in Algeria
More details
Hide details
1
Centre de Recherche en Aménagement du Territoire, CRAT, Campus Universitaire Zouaghi Slimane, Constantine, Algérie
2
Ecole Nationale Supérieure Agronomique, ENSA, El-Harrach, Alger, Algérie
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2022-05-16
Acceptance date: 2022-07-25
Online publication date: 2022-08-26
Corresponding author
Salah Hadjout
Centre de Recherche en Aménagement du Territoire, CRAT, Campus Universitaire Zouaghi Slimane, Constantine, Algérie
Journal of Plant Protection Research 2022;62(3):287-294
HIGHLIGHTS
- Much higher content of bound phenolic acids compared to free phenolic acids at all genotypes.
- The most contained phenolic acid was ferulic acid followed by p-coumaric acid.
- Predominance of monomeric forms and dimers of ferulic acid (DiFA) in wheat ears.
- Higher concentrations of free and cell wall bound phenolic acids at the flowering stage in the G1 line.
KEYWORDS
TOPICS
ABSTRACT
All plants contain varying levels of phenolic acids (metabolites) thus playing an important
role in resistance mechanisms as constituents of cell walls, as constitutive antimicrobial
compounds of plants or induced in response to infection against many diseases, in particular
fusarium head blight caused by Fusarium species. To this end, the objective of this
research was to study the variation in phenolic acid composition during the kinetics of
filling wheat grains, in order to determine the best variety resistant to fusarium head blight.
For this purpose, free and bound phenolic analyses were carried out by HPLC-DAD on
five durum wheat varieties at the stage 5 to 8 days after the flowering stage (early grains).
We showed that at the level of the samples analyzed, several phenolic acids were present at
different concentrations, but others were absent [cis-ferulic acid (free phenolic acid), and
sinapic acid (bound phenolic acid)]. The results also showed that the content of bound
phenolic acids was much higher than that of free phenolic acids in all varieties. In addition,
these phenolic acids existed in free soluble form or were mostly present in insoluble form
bound to cell walls. For free acids, the results showed that significant amounts of transferulic
acid were detected in comparison to all free phenolic acids (56.72 μg · g–1 DM for
G10). For bound acids, ferulic acid is the main bound phenolic acid which has much higher
levels (4913.92 μg · g–1 DM for G1), followed by p-coumaric acid (3098.99 μg · g–1 DM
for G1). Moreover, the sum of monomers (bound acids) was much higher than that of
dehydrodiferulic acids (DiFA).
FUNDING
We thank ENSA, El-Harrach, Algiers and INRAE of
Bordeaux, France for their financial support within the
framework of the “CMEP PHC TASSILI” Project.
RESPONSIBLE EDITOR
Piotr Kaczyński
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (49)
1.
Abdallah-Nekache N., Laraba I., Ducos C., Barreau C., Bouznad Z., Boureghda H. 2019. Occurrence of fusarium head blight and fusarium crown rot in Algerian wheat: identification of associated species and assessment of aggressiveness. European Journal of Plant Pathology 154 (3): 499–512. DOI:
https://doi.org/10.1007/s10658....
2.
Anson N.M., Van Den Berg R., Havenaar R., Bast A., Haenen G.R. 2009. Bioavailability of ferulic acid is determined by its bioaccessibility. Journal of Cereal Science 49 (2): 296–300. DOI:
https://doi.org/10.1016/j.jcs.....
3.
Atanasova-Penichon V., Barreau C., Richard-Forget F. 2016. Antioxidant secondary metabolites in cereals: Potential involvement in resistance to Fusarium and mycotoxin accumulation. Frontiers in Microbiology 7: 566. DOI:
https://doi.org/10.3389/fmicb.....
4.
Atanasova-Penichon V., Bernillon S., Marchegay G., Lornac A., Pinson-Gadais L., Ponts N., Zehraoui E., Barreau C., Richard-Forget F. 2014. Bioguided isolation, characterization, and biotransformation by Fusarium verticillioides of maize kernel compounds that inhibit fumonisin production. Molecular Plant-Microbe Interactions 27 (10): 1148–1158. DOI:
http://dx.doi.org/10.1094/MPMI....
5.
Atanasova-Penichon V., Richard-Forget F. 2014. Les phytomicronutriments des céréales: un élément de résistance à la fusariose et à l’accumulation de mycotoxines. Innovations Agronomiques 42: 63–76.
6.
Atanasova-Penichon V., Pons S., Pinson-Gadais L., Picot A., Marchegay G., Bonnin-Verdal M.N. Ducos C., Barreau C., Roucolle J., Sehabiague P., Carolo P., Richard-Forget F. 2012. Chlorogenic acid and maize ear rot resistance: a dynamic study investigating Fusarium graminearum development, deoxynivalenol production, and phenolic acid accumulation. Molecular Plant-Microbe Interactions 25 (12): 1605–1616. DOI:
https://doi.org/10.1094/MPMI-0....
7.
Bai G., Shaner G. 2004. Management and resistance in wheat and barley to fusarium head blight. Annual Review of Phytopathology 42: 135–161. DOI:
https://doi.org/10.1146/annure....
8.
Boutigny A.L., Barreau C., Atanasova-Penichon V., Verdal-Bonnin M.N., Pinson-Gadais L., Richard-Forget F. 2009. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycological Research 113 (6–7): 746–753. DOI:
https://doi.org/10.1016/j.mycr....
9.
Boutigny A.L., Richard-Forget F., Barreau C. 2008. Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. European Journal of Plant Pathology 121 (4): 411–423. DOI:
https://doi.org/10.1007/s10658....
10.
Boutigny A.L. 2007. Etude de l’effet de composés du grain de blé dur sur la régulation de la voie de biosynthèse des trichothécènes B: purification de composés inhibiteurs, analyse des mécanismes impliqués (Doctoral dissertation, Bordeaux 1).
12.
Brandolini A., Castoldi P., Plizzari L., Hidalgo A. 2013. Phenolic acids composition, total polyphenols content and antioxidant activity of Triticum monococcum, Triticum turgidum and Triticum aestivum: A two-years evaluation. Journal of Cereal Science 58 (1): 123–131. DOI:
https://doi.org/10.1016/j.jcs.....
13.
Chrpová J., Orsák M., Martinek P., Lachman J., Trávníčková M. 2021. Potential role and involvement of antioxidants and other secondary metabolites of wheat in the infection process and resistance to Fusarium spp. Agronomy 11 (11): 2235. DOI:
https://doi.org/10.3390/agrono....
14.
Das A.K., Singh V. 2015. Antioxidative free and bound phenolic constituents in pericarp, germ and endosperm of Indian dent (Zea mays var. indentata) and flint (Zea mays var. indurata) maize. Journal of Functional Foods 13: 363–374. DOI:
https://doi.org/10.1016/j.jff.....
15.
Dhokane D., Karre S., Kushalappa A.C., McCartney C. 2016. Integrated metabolo-transcriptomics reveals fusarium head blight candidate resistance genes in wheat QTL-Fhb2. PloS One 11 (5): e0155851. DOI:
https://doi.org/10.1371/journa....
16.
El Gharras H. 2009. Polyphenols: food sources, properties and applications – a review. International Journal of Food Science and Technology 44 (12): 2512–2518. DOI:
https://doi.org/10.1111/j.1365....
17.
Gauthier L., Bonnin-Verdal M.N., Marchegay G., Pinson-Gadais L., Ducos C., Richard-Forget F., Atanasova-Penichon V. 2016. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. International Journal of Food Microbiology 221: 61–68. DOI:
http://dx.doi.org/10.1016/j.ij....
18.
Gauthier L., Atanasova-Penichon V., Chéreau S., Richard-Forget F. 2015. Metabolomics to decipher the chemical defense of cereals against Fusarium graminearum and deoxynivalenol accumulation. International Journal of Molecular Sciences 16 (10): 24839–24872. DOI:
https://doi.org/10.3390/ijms16....
19.
Gervais L., Dedryver F., Morlais J.Y., Bodusseau V., Negre S., Bilous M., Groos C., Trottet M. 2003. Mapping of quantitative trait loci for field resistance to fusarium head blight in an European winter wheat. Theoretical and Applied Genetics 106 (6): 961–970. DOI:
https://doi.org/10.1007/s00122....
20.
Hadjout S., Chéreau S., Atanasova-Penichon V., Marchegay G., Mekliche L., Boureghda H., Barreau C., Touati-Hattab S., Bouznad Z., Richard-Forget F. 2017. Phenotypic and biochemical characterization of new advanced durum wheat breeding lines from Algeria that show resistance to fusarium head blight and to mycotoxin accumulation. Journal of Plant Pathology 99 (3): 671–680. DOI:
https://www.jstor.org/stable/4....
21.
Jung Y., Park C.S., Jeung J.U., Kim C.K., Park J.C., Kang C.S., Seo Y.W. 2010. Employment of wheat grain properties in evaluation of fusarium head blight resistance. Journal of Crop Science and Biotechnology 13 (4): 275–281. DOI:
https://doi.org/10.1007/s12892....
22.
Kandil A., Li J., Vasanthan T., Bressler D.C. 2012. Phenolic acids in some cereal grains and their inhibitory effect on starch liquefaction and saccharification. Journal of Agricultural and Food Chemistry 60 (34): 8444–8449. DOI:
https://doi.org/10.1021/jf3000....
23.
Khaledi N., Taheri P., Falahati Rastegar M. 2017. Identification, virulence factors characterization, pathogenicity and aggressiveness analysis of Fusarium spp., causing wheat head blight in Iran. European Journal of Plant Pathology 147 (4): 897–918. DOI:
https://doi.org/10.1007/s10658....
24.
Kim K.H., Tsao R., Yang R., Cui S.W. 2006. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chemistry 95 (3): 466–473. DOI:
https://doi.org/10.1016/j.food....
25.
Kriss A.B., Paul P.A., Madden L.V. 2010. Relationship between yearly fluctuations in fusarium head blight intensity and environmental variables: a window-pane analysis. Phytopathology 100 (8): 784–797. DOI:
https://doi.org/10.1094/PHYTO-....
26.
Lattanzio V. 2013. Phenolic Compounds: Introduction. p. 1543–1580. In: “Natural Products” (Ramawat K., Mérillon J.M., eds.). Springer, Berlin, Heidelberg. DOI:
https://doi.org/10.1007/978-3-....
27.
Lempereur I., Surget A., Rouau X. 1998. Variability in dehydrodiferulic acid composition of durum wheat (Triticum durum Desf.) and distribution in milling fractions. Journal of Cereal Science 28 (3): 251–258. DOI:
https://doi.org/10.1016/S0733-....
28.
Lempereur I., Rouau X., Abecassis J. 1997. Genetic and agronomic variation in arabinoxylan and ferulic acid contents of durum wheat (Triticum durum L.) grain and its milling fractions. Journal of Cereal Science 25 (2): 103–110. DOI:
https://doi.org/10.1006/jcrs.1....
29.
Leváková Ľ., Lacko-Bartošová M. 2017. Phenolic acids and antioxidant activity of wheat species: A review. Agriculture (Pol’nohospodárstvo) 63 (3): 92–101. DOI:
https://doi.org/10.1515/agri-2....
30.
Lozowicka B., Iwaniuk P., Konecki R., Kaczynski P., Kuldybayev N., Dutbayev Y. 2022. Impact of diversified chemical and biostimulator protection on yield, health status, mycotoxin level, and economic profitability in spring wheat (Triticum aestivum L.) cultivation. Agronomy 12 (2): 258. DOI:
https://doi.org/10.3390/agrono....
31.
Mccallum J.A., Walker J.R. 1991. Phenolic biosynthesis during grain development in wheat (Triticum aestivum L.) III. Changes in hydroxycinnamic acids during grain development. Journal of Cereal Science 13 (2): 161–172. DOI:
https://doi.org/10.1016/S0733-....
32.
McKeehen J.D., Busch R.H., Fulcher R.G. 1999. Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. Journal of Agricultural and Food Chemistry 47 (4): 1476–1482. DOI:
https://doi.org/10.1021/jf9808....
33.
Moore J., Liu J.G., Zhou K., Yu L. 2006. Effects of genotype and environment on the antioxidant properties of hard winter wheat bran. Journal of Agricultural and Food Chemistry 54 (15): 5313–5322. DOI:
https://doi.org/10.1021/jf0603....
34.
Mpofu A., Sapirstein H.D., Beta T. 2006. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. Journal of Agricultural and Food Chemistry 54 (4): 1265–1270. DOI:
https://doi.org/10.1021/jf0526....
35.
Nicoletti I., Martini D., De Rossi A., Taddei F., D’Egidio M.G., Corradini D. 2013. Identification and quantification of soluble free, soluble conjugated, and insoluble bound phenolic acids in durum wheat (Triticum turgidum L. var. durum) and derived products by RP-HPLC on a semimicro separation scale. Journal of Agricultural and Food Chemistry 61 (48): 11800–11807. DOI:
https://doi.org/10.1021/jf4035....
36.
Onyeneho S.N., Hettiarachchy N.S. 1992. Antioxidant activity of durum wheat bran. Journal of Agricultural and Food Chemistry 40 (9): 1496–1500. DOI:
https://doi.org/10.1021/jf0002....
37.
Osborne L.E., Stein J.M. 2007. Epidemiology of fusarium head blight on small-grain cereals. International Journal of Food Microbiology 119 (1–2): 103–108. DOI:
https://doi.org/10.1016/j.ijfo....
38.
Parker M.L., Ng A., Waldron K.W. 2005. The phenolic acid and polysaccharide composition of cell walls of bran layers of mature wheat (Triticum aestivum L. cv. Avalon) grains. Journal of the Science of Food and Agriculture 85 (15): 2539–2547. DOI:
https://doi.org/10.1002/jsfa.2....
39.
Paznocht L., Kotíková Z., Burešová B., Lachman J., Martinek P. 2020. Phenolic acids in kernels of different coloured-grain wheat genotypes. Plant, Soil and Environment 66 (2): 57–64. DOI:
https://doi.org/10.17221/380/2....
40.
Peyron S., Surget A., Mabille F., Autran J.C., Rouau X., Abecassis J. 2002. Evaluation of tissue dissociation of durum wheat grain (Triticum durum Desf.) generated by the milling process. Journal of Cereal Science 36 (2): 199–208. DOI:
https://doi.org/10.1006/jcrs.2....
41.
Régnier T., Macheix J.J. 1996. Changes in wall-bound phenolic acids, phenylalanine and tyrosine ammonia-lyases, and peroxidases in developing durum wheat grains (Triticum turgidum L. var. durum). Journal of Agricultural and Food Chemistry 44 (7): 1727–1730. DOI:
https://doi.org/10.1021/jf9506....
42.
Shah L., Ali A., Yahya M., Zhu Y., Wang S., Si H., Ur Rahman H., Ma C. 2018. Integrated control of fusarium head blight and deoxynivalenol mycotoxin in wheat. Plant Pathology 67 (3): 532–548. DOI:
https://doi.org/10.1111/ppa.12....
43.
Shao Y., Hu Z., Liu C., Xu Q., Zhang H., Yan Q., Zhu D., Zhu Z. 2021. Phenolic acids and phytosterols in rice grains and wheat flours consumed in five regions of China. Journal of Food Science 86 (5): 1878–1892. DOI:
https://doi.org/10.1111/1750-3....
44.
Siranidou E., Kang Z., Buchenauer H. 2002. Studies on symptom development, phenolic compounds and morphological defence responses in wheat cultivars differing in resistance to fusarium head blight. Journal of Phytopathology 150 (4–5): 200–208. DOI:
https://doi.org/10.1046/j.1439....
45.
Valverde-Bogantes E., Bianchini A., Herr J.R., Rose D.J., Wegulo S.N., Hallen-Adams H.E. 2020. Recent population changes of fusarium head blight pathogens: drivers and implications. Canadian Journal of Plant Pathology 42 (3): 315–329. DOI:
https://doi.org/10.1080/070606....
46.
van Hung P. 2014. Phenolic compounds of cereals and their antioxidant capacity. Critical Reviews in Food Science and Nutrition 56 (1): 25–35. DOI:
https://doi.org/10.1080/104083....
47.
Wang L., Yao Y., He Z., Wang D., Liu A., Zhang Y. 2013. Determination of phenolic acid concentrations in wheat flours produced at different extraction rates. Journal of Cereal Science 57 (1): 67–72. DOI:
https://doi.org/10.1016/j.jcs.....
48.
Zhou K., Su L., Yu L. 2004. Phytochemicals and antioxidant properties in wheat bran. Journal of Agricultural and Food Chemistry 52 (20): 6108–6114. DOI:
https://doi.org/10.1021/jf0492....
49.
Žilić S. 2016. Phenolic compounds of wheat. Their content, antioxidant capacity and bioaccessibility. MOJ Food Processing and Technology 2 (3): 85–89. DOI: 10.15406/mojfpt.2016.02.00037.