ORIGINAL ARTICLE
Comparative analysis of environmental impacts of wheat and potato production in conventional and organic systems
,
 
 
 
 
More details
Hide details
1
Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection − National Research Institute, Poznań, Poland
 
 
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
 
 
Submission date: 2024-05-20
 
 
Acceptance date: 2024-11-25
 
 
Online publication date: 2025-02-14
 
 
Corresponding author
Malgorzata Holka   

Department of Organic Agriculture and Environmental Protection, Institute of Plant Protection − National Research Institute, Poznań, Poland
 
 
 
HIGHLIGHTS
  • The environmental impacts of conventional and organic crop production were analysed.
  • Upstream processes have a relatively high contribution to the impacts.
  • In conventional cultivation, mineral fertilisation was identified as a hotspot.
  • The main hotspots of organic crop production are soil preparation and sowing.
  • Acidification and fossil fuel depletion are key environmental issues in both systems.
KEYWORDS
TOPICS
ABSTRACT
Agricultural production has a direct impact on the environment, both by consuming natural resources and by generating hazards in the form of emissions of various substances into the environment. Increased demand for plant products on global food markets contributes to heightened environmental pressure on agriculture. Agriculture, along with other sectors, should adhere to sustainability principles. Ongoing global development hinges on achieving a balance between economic growth and natural resource conservation. To fulfill the goals of sustainable development, agriculture should strive to minimize energy and natural resources consumption, thereby reducing its environmental impact. In the above context, research on the environmental effects of different agricultural production systems is needed. The aim of this study was to assess the environmental effects of two cultivation systems, conventional and organic, throughout the life cycles of winter wheat and potato production. The research employed a life cycle assessment (LCA) methodology from cradle to farm gate for assessing environmental impacts of crop cultivation across different farming systems, with respect to the functional unit of 1 tonne. Organic farming was shown to have lower environmental impacts than a conventional production system. The results confirm the sustainable nature of organic farming and its ability to mitigate the effects of farming activities. The LCA of conventional wheat and potato production showed that fertilizer application was the main environmental concern, highlighting the need to optimize fertilization to reduce environmental impacts. Furthermore, the results indicated that acidification and depletion of abiotic fossil fuel resources were significant environmental threats within the systems analyzed.
ACKNOWLEDGEMENTS
The authors would like to thank Mr. Rafał Nowaczyk, Institute of Plant Protection − National Research Institute for his valuable support in collecting field data.
RESPONSIBLE EDITOR
Piotr Szulc
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (54)
1.
Alhashim R., Deepa R., Anandhi A. 2021. Environmental impact assessment of agricultural production using LCA: a review. Climate 9 (11): 164. DOI: https://doi.org/10.3390/cli911....
 
2.
Andersson-Sköld Y., Grennfelt P., Pleijel K. 1992. Photochemical ozone creation potentials: a study of different concepts. Journal of the Air and Waste Management Association 42 (9): 1152–1158. DOI: https://doi.org/10.1080/104732....
 
3.
Baum R., Bieńkowski J. 2020. Eco-efficiency in measuring the sustainable production of agricultural crops. Sustainability 12 (4): 1418. DOI: https://doi.org/10.3390/su1204....
 
4.
Bernas J., Koppensteiner L., Tichá M., Kaul H.P., Klimek-Kopyra A., Euteneuer P., Moitzi G., Neugschwandtner R. 2023. Optimal environmental design of nitrogen application rate for facultative wheat using life cycle assessment. European Journal of Agronomy 146: 126813. DOI: https://doi.org/10.1016/j.eja.....
 
5.
Brentrup F., Küsters J., Lammel J., Barraclough P., Kuhlmann H. 2004. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. European Journal of Agronomy 20: 265–279. DOI: https://doi.org/10.1016/S1161-....
 
6.
Dekamin M., Kheiralipour K., Afshar R.K. 2022. Energy, economic, and environmental assessment of coriander seed production using material flow cost accounting and life cycle assessment. Environmental Science and Pollution Research 29: 83469–83482. DOI: https://doi.org/10.1007/s11356....
 
7.
Derwent R.G., Jenkin M.E., Saunders S.M., Pilling M.J. 1998. Photochemical ozone creation potentials for organic compounds in Northwest Europe calculated with a master chemical mechanism. Atmospheric Environment 32 (14−15): 2429–2441. DOI: https://doi.org/10.1016/S1352-....
 
8.
Dijkman T.J., Birkved M., Hauschild M.Z. 2012. PestLCI 2.0: A second generation model for estimating emissions of pesticides from arable land in LCA. International Journal of Life Cycle Assessment 17: 973–986. DOI: https://doi.org/10.1007/s11367....
 
9.
Ecoinvent Center. 2024. Ecoinvent Database [Available on: http://www.ecoinvent.ch/ [Accessed: 14 February 2024].
 
10.
European Environment Agency (EEA). 2013. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2013. Publications Office of the European Union: Luxembourg.
 
11.
European Environment Agency (EEA). 2016. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016, Publications Office of the European Union, Luxembourg.
 
12.
Fan J., Liu C., Xie J., Han L., Zhang C., Guo D., Niu J., Jin H., McConkey B.G. 2022. Life cycle assessment on agricultural production: a mini review on methodology, application, and challenges. International Journal of Environmental Research and Public Health 19 (16): 9817. DOI: https://doi.org/10.3390/ijerph....
 
13.
Foley J.A., Defries R., Asner G.P., Barford C., Bonan G., Carpenter S.R., Chapin F.S., Coe M.T, Daily G.C., Gibbs H.K., Helkowski J.H., Holloway T., Howard E.A., Kucharik C.J., Monfreda C., Patz J.A., Prentice I.C., Ramankutty N., Snyder P.K. 2005. Global consequences of land use. Science 309: 570–574. DOI: https://doi.org/10.1126/scienc....
 
14.
Foley J., Ramankutty N., Brauman K., Cassidy E., Gerber J., Johnston M., Mueller N., O'Connell C., Ray D., West P., Balzer C., Bennett E., Carpenter S., Hill J., Monfreda C., Polasky S., Rockström J., Sheehan J., Siebert S., Zaks D. 2011. Solutions for a cultivated planet. Nature 478: 337–342. DOI: https://doi.org/10.1038/nature....
 
15.
Food and Agriculture Organization (FAO) 2022. The state of the world’s land and water resources for food and agriculture – systems at breaking point. Main report. FAO, Rome, Italy. 393 pp. DOI: https://doi.org/10.4060/cb9910....
 
16.
Gamage A., Gangahagedara R., Gamage J., Jayasinghe N., Kodikara N., Suraweera P., Merah O. 2023. Role of organic farming for achieving sustainability in agriculture. Farming System 1 (1): 100005. DOI: https://doi.org/10.1016/j.fars....
 
17.
Gomiero T. 2021. Organic agriculture: impact on the environment and food quality. p. 31–58. In: “Environmental Impact of Agro-Food Industry and Food Consumption” (C.M. Galanakis, ed.). Academic Press, 293 pp. DOI: https://doi.org/10.1016/B978-0....
 
18.
Guinée J.B., Gorrée M., Heijungs R., Huppes G., Kleijn R., de Koning A., van Oers L., Wegener Sleeswijk A., Suh S., Udo de Haes H.A., Bruijn H. de, Duin R. van, Huijbregts M.A.J. 2002. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. I: LCA in Perspective. IIa: Guide. IIb: Operational Annex. III: Scientific Background. Kluwer Academic Publishers, Dordrecht, the Netherlands, 692 pp.
 
19.
Holka M., Jankowiak J., Bieńkowski J., Dąbrowicz R. 2016. Life cycle assessment (LCA) of winter wheat in an intensive crop production system in Wielkopolska region (Poland). Applied Ecology and Environmental Research 14 (3): 535–545. DOI: http://dx.doi.org/10.15666/aee....
 
20.
Holka M., Kowalska J., Jakubowska M. 2022. Reducing carbon footprint of agriculture – can organic farming help to mitigate climate change? Agriculture 12 (9): 1383. DOI: https://doi.org/10.3390/agricu....
 
21.
Huijbregts M. 1999. Life cycle impact assessment of acidifying and eutrophying air pollutants. Calculation of equivalency factors with RAINS-LCA. Interfaculty Department of Environmental Science, Faculty of Environmental Science, University of Amsterdam.
 
22.
Huijbregts M., Seppälä J. 2001. Life cycle impact assessment of pollutants causing aquatic eutrophication. International Journal of Life Cycle Assessment 6: 339–343. DOI: http://dx.doi.org/10.1007/BF02....
 
23.
International Organization for Standardization (ISO). 2006a. ISO 14040:2006. Environmental Management–Life Cycle Assessment–Principles and Framework. ISO, Geneva, Switzerland.
 
24.
International Organization for Standardization (ISO). 2006b. ISO 14044:2006. Environmental Management–Life Cycle Assessment–Requirements and Guidelines. ISO, Geneva, Switzerland.
 
25.
Intergovernmental Panel on Climate Change (IPCC). 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2 Energy. Task Force on National Greenhouse Gas Inventories. [Available on: http://www.ipcc-nggip.iges.or....] [Accessed: 14 February 2024].
 
26.
Intergovernmental Panel on Climate Change (IPCC). 2007. Climate Change 2007: The Physical Science Basis. In: “Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change”. Cambridge University Press: Cambridge, UK; New York, NY, USA, 996 pp.
 
27.
Kheiralipour K. 2022. Sustainable Production: Definitions, Aspects, and Elements. 1st ed. Nova Science Publishers, New York, US, 124 pp.
 
28.
Kheiralipour K., Brandão M., Holka M., Choryński A. 2024. A review of environmental impacts of wheat production in different agrotechnical systems. Resources 13 (7): 93. DOI: https://doi.org/10.3390/resour....
 
29.
Kopittke P.M., Menzies N.W., Wang P., McKenna B.A., Lombi E. 2019. Soil and the intensification of agriculture for global food security. Environment International 132: 105078. DOI: https://doi.org/10.1016/j.envi....
 
30.
Kowalczyk Z. 2019. Life cycle assessment (LCA) of potato production. In: E3S Web Conf. XXII International Scientific Conference POLSITA 2019 “Progress of mechanical engineering supported by information technology” 132: 02003. DOI: https://doi.org/10.1051/e3scon....
 
31.
Kumar R., Bhardwaj A., Singh L.P., Singh G. 2023. Quantifying ecological impacts: A comparative life cycle assessment of conventional and organic potato cultivation. Ecological Modelling 486: 110510. DOI: https://doi.org/10.1016/j.ecol....
 
32.
Mattsson B., Wallén E. 2003. Environmental life cycle assessment (LCA) of organic potatoes. Acta Horticulturae 619: 427–435. DOI: https://doi.org/10.17660/ActaH....
 
33.
Meemken E.M., Qaim M. 2018. Organic agriculture, food security, and the environment. Annual Review of Resource Economics 10: 39–63. DOI: https://doi.org/10.1146/annure....
 
34.
Meena R.S., Kumar S., Yadav G.S. 2020. Soil carbon sequestration in crop production. p. 1–39. In: “Nutrient Dynamics for Sustainable Crop Production” (R. Meena, ed.). Springer, Singapore. 352 pp. DOI: https://doi.org/10.1007/978-98....
 
35.
Meier M., Stoessel F., Jungbluth N., Juraske R., Schader C., Stolze M. 2015. Environmental impacts of organic and conventional agricultural products – are the differences captured by life cycle assessment? Journal of Environmental Management 149: 193–208. DOI: https://doi.org/10.1016/j.jenv....
 
36.
Moudrý Jr J., Jelínková Z., Jarešová M., Plch R., Moudrý J., Konvalina P. 2013. Assessing greenhouse gas emissions from potato production and processing in the Czech Republic. Outlook on Agriculture 42 (3): 179–183. DOI: https://doi.org/10.5367/oa.201....
 
37.
Mukosha C.E., Moudrý J., Lacko-Bartošová M., Lacko-Bartošová L., Eze F.O., Neugschwandtner R.W., Amirahmadi E., Lehejček J., Bernas J. 2023. The effect of cropping systems on environmental impact associated with winter wheat production – an LCA “cradle to farm gate” approach. Agriculture 13 (11): 2068. DOI: https://doi.org/10.3390/agricu....
 
38.
Nitschelm L., Flipo B., Auberger J., Chambaut H., Dauguet S., Espagnol S., Gac A., Le Gall C., Malnoé C., Perrin A., Ponchant P., Renaud-Gentié C., Tailleur A., van der Werf H.M.G. 2021. Life cycle assessment data of French organic agricultural products. Data Brief 38: 107356. DOI: https://doi.org/10.1016/j.dib.....
 
39.
Pishgar-Komleh S.H., Żyłowski T., Rozakis S., Kozyra J. 2020. Efficiency under different methods for incorporating undesirable outputs in an LCA+DEA framework: A case study of winter wheat production in Poland. Journal of Environmental Management 260: 110138. DOI: https://doi.org/10.1016/j.jenv....
 
40.
Pourmehdi K., Kheiralipour K. 2023. Compression of input to total output index and environmental impacts of dryland and irrigated wheat production systems. Ecological Indicators 148: 110048. DOI: https://doi.org/10.1016/j.ecol....
 
41.
Sala S., Amadei A.M., Beylot A., Ardente F. 2021. The evolution of life cycle assessment in European policies over three decades. International Journal of Life Cycle Assessment 26: 2295–2314. DOI: https://doi.org/10.1007/s11367....
 
42.
Sanyé-Mengual E., Sala S. 2022. Life cycle assessment support to environmental ambitions of EU policies and the Sustainable Development Goals. Integrated Environmental Assessment and Management 18 (5): 1221–1232. DOI: https://doi.org/10.1002/ieam.4....
 
43.
Shankar T., Praharaj S., Sahoo U., Maitra S. 2021. Intensive farming: it’s effect on the environment. Indian Journal of Natural Sciences 12 (69): 37480–37487.
 
44.
Skowrońska M., Filipek T. 2014. Life cycle assessment of fertilisers: a review. International Agrophysics 28 (1): 101–110. DOI: https://doi.org/10.2478/intag-....
 
45.
Sleeswijk A.W., van Oers L.F., Guinée J.B., Struijs J., Huijbregts M.A. 2008. Normalisation in product life cycle assessment: an LCA of the global and European economic systems in the year 2000. Science of the Total Environment 390 (1): 227–240. DOI: https://doi.org/10.1016/j.scit....
 
46.
Smith L.G., Kirk G.J.D., Jones P.J., Williams A.G. 2019. The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nature Communications 10: 4641. DOI: https://doi.org/10.1038/s41467....
 
47.
Sonnemann G., Gemechu E.D., Sala S., Schau E.M., Allacker K., Pant R., Adibi N., Valdivia S. 2018. Life cycle thinking and the use of LCA in policies around the world. p. 429–463. In: “Life Cycle Assessment: Theory and Practice” (M. Hauschild, R. Rosenbaum, S. Olsen, eds.). Springer, Cham, 1215 pp. DOI: https://doi.org/10.1007/978-3-....
 
48.
Tandzi N.L., Mutengwa S.C. 2020. Factors affecting yield of crops. In: “Agronomy – Climate Change and Food Security” (Amanullah, ed.). IntechOpen, London, UK. 108 pp. DOI: https://doi.org/10.5772/intech....
 
49.
Timpanaro G., Branca F., Cammarata M., Falcone G., Scuderi A. 2021. Life cycle assessment to highlight the environmental burdens of early potato production. Agronomy 11: 879. DOI: https://doi.org/10.3390/agrono....
 
50.
Van Beek C.L., Brouwer L., Oenema O. 2003. The use of farmgate balances and soil surface balances as estimator for nitrogen leaching to surface water. Nutrient Cycling in Agroecosystems 67: 233–244. DOI: https://doi.org/10.1023/B:FRES....
 
51.
Van Oers L., Guinée J. 2016. The abiotic depletion potential: background, updates, and future. Resources 5 (1): 16. DOI: https://doi.org/10.3390/resour....
 
52.
Van Stappen F., Loriers A., Mathot M., Planchon V., Stilmant D., Debode F. 2015. Organic versus conventional farming: the case of wheat production in Wallonia (Belgium). Agriculture and Agricultural Science Procedia 7: 272–279. DOI: https://doi.org/10.1016/j.aasp....
 
53.
Verdi L., Marta A.D., Falconi F., Orlandini S., Mancini M. 2022. Comparison between organic and conventional farming systems using Life Cycle Assessment (LCA): a case study with an ancient wheat variety. European Journal of Agronomy 141: 126638. DOI: https://doi.org/10.1016/j.eja.....
 
54.
Willer H., Trávníček J., Meier C., Schlatter B. 2022. The World of Organic Agriculture. Statistics and Emerging Trends 2022. Research Institute of Organic Agriculture FiBL, Frick, and IFOAM – Organics International, Bonn, 345 pp.
 
eISSN:1899-007X
ISSN:1427-4345
Journals System - logo
Scroll to top