ORIGINAL ARTICLE
Charcoal rot and root-knot nematode control on faba bean by photosynthesized colloidal silver nanoparticles using bioactive compounds from Moringa oleifera leaf extract
More details
Hide details
1
Photochemistry Department, National Research Center, Dokki, Giza, Egypt
2
Genetics and Cytology Department, National Research Center, Dokki, Giza, Egypt
3
Plant Pathology Department, National Research Center, Dokki, Giza, Egypt
4
Plant Pathology Department, Nematology Unit, National Research Center, Dokki, Giza, Egypt
5
Botany Department, National Research Center, Dokki, Giza, Egypt
A - Research concept and design; B - Collection and/or assembly of data; C - Data analysis and interpretation; D - Writing the article; E - Critical revision of the article; F - Final approval of article
Submission date: 2021-04-24
Acceptance date: 2021-07-30
Online publication date: 2021-12-20
Journal of Plant Protection Research 2021;61(4):414-429
KEYWORDS
TOPICS
ABSTRACT
In Egypt, faba bean plants are severely damaged by charcoal rot, caused by Macrophomina phaseolina and root-knot, caused by Meloidogyne incognita. The current study was aimed to control these diseases using silver nanoparticles that were biologically synthesized from Moringa oleifera leaf extract. In this work, silver nanoparticles (AgNPs) were prepared with trisodium citrate as a reducing agent to produce chemo-AgNPs and, using an environmentally eco-friendly method, an aqueous extract of M. oleifera leaves under visible light radiation to produce bio-AgNPs. The obtained colloidal solutions of AgNPs were identified by UV-Visible (UV-Vis) spectral analysis and Transmission Electron Microscopy (TEM) analyses. The antifungal and anti-nematode activities of chemo- and bio-AgNPs as well as an aqueous extract of M. oleifera leaves were checked in vitro against M. phaseolina and M. incognita. The obtained results showed that bio-AgNPs were more effective than chemo-AgNPs. Under greenhouse conditions, bio-AgNPs showed a significant reduction in the incidence of damping-off and charcoal rot caused by M. phaseolina. This treatment also reduced the number of juveniles in the soil, the number of galls and the number of egg-masses of M. incognita in comparison to plants treated with nematodes. Moreover, the protein profile using SDS-PAGE was performed for determining the effect of the studied treatments on the expression of some genes compared with untreated plants the alteration in gene expression led to the formation of different proteins and the loss of others. The proteins which were formed or lost caused a significant variation in all growth and physiological parameters such as photosynthetic pigments, proline content and antioxidant enzymes of faba bean plants.
ACKNOWLEDGEMENTS
The authors are grateful to the National Research Center (Egypt) for providing the facilities.
RESPONSIBLE EDITOR
CONFLICT OF INTEREST
The authors have declared that no conflict of interests exist.
REFERENCES (52)
1.
Abd-Elgawad M.M.M., Askary T.H. 2018. Fungal and bacterial nematicides in integrated nematode management strategies. Egyptian Journal of Biological Pest Control 28: 74. DOI:
https://doi.org/10.1186/s41938....
2.
Abdel-Monaim M.F. 2013. Improvement of biocontol of damping-off and root-rot/wilt of faba bean by salicylic acid and hydrogen peroxide. Mycobiology 41: 47−55. DOI:
https://doi.org/10.5941/MYCO.2....
3.
Abdelsalam A.Z.E., Hassan H.Z., El-Domyati M., Eweda M.A., Bahieldin A., Ibrahim S.A. 1993. Comparative mutagenic effects of some compounds using different eukaryotic systems. Egyptian Journal of Genetics and Cytology 22: 129−153.
4.
Al-Huqail A.A., Hatata M.M., AL-Huqail A.A., Ibrahim M.M. 2018. Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi Journal of Biological Sciences 25: 313−319. DOI:
https://doi.org/10.1016/j.sjbs....
5.
Baird R.E., Watson C.E., Scruggs M. 2003. Relative longevity of Macrophomina phaseolina and associated mycobiota on residual soybean roots in soil. Plant Disease 87: 563−566. DOI:
https://doi.org/10.1094/PDIS.2....
6.
Barker T.R. 1985. Nematode extraction and bioassays. p. 19−35. In: “An Advanced Treatise on Meloidogyne”. Vol. II. (T.R. Barker, C.C. Carter, J.N. Sasser, eds.). North Carolina University, Graphics, Raleigh, N.C.
7.
Bates L.S., Waldren R.P., Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205−207. DOI:
https://doi.org/10.1007/BF0001....
8.
Cayrol J.C., Djian C., Pijarowski L. 1989. Study of the nematocidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Rev Nematol 12: 331–336.
10.
El-Nagdi W.M.A., Youssef M.M.A. 2004. Soaking faba bean seed in some bio-agents as prophylactic treatment for controlling Meloidogyne incognita root-knot nematode infection. Journal of Pest Science 77: 75−78. DOI:
https://doi.org/10.1007/s10340....
11.
El-Refai A.A., Ghoniem G.A., El-Khateeb A.Y., Hassaan M.M. 2018. Eco-friendly synthesis of metal nanoparticles using ginger and garlic extracts as biocompatible novel antioxidant and antimicrobial agents. Journal of Nanostructure in Chemistry 8: 71−81. DOI:
https://doi.org/10.1007/s40097....
12.
Elshahawy I., Abouelnasr H.M., Lashin S.M., Darwesh O.M. 2018. First report of Pythium aphanidermatum infecting tomato in Egypt and its control using biogenic silver nanoparticles. Journal of Plant Protection Research 58: 137−151. DOI:
https://doi.org/10.24425/12292....
13.
Fouad M., Mohammed N., Aladdin H., Ahmed A., Xuxiao Z., Shiying B., Tao Y. 2013. Faba bean. p. 113−136. In: “Genetic and Genomic Resources of Grain Legume Improvement” (M. Singh, H.D. Upadhyaya, I.S. Bisht, eds.). Elsevier. DOI:
https://doi.org/10.1016/C2012-....
14.
Foyer C.H., Noctor G. 2005. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment 28: 1056−1071. DOI:
https://doi.org/10.1111/j.1365....
15.
Feizi H., Amirmoradi S., Abdollahi F., Pour S.J. 2013. Comparative effects of nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Annual Research & Review in Biology 3: 814−824.
16.
Giraldo J.P., Landry M.P., Faltermeier S.M., McNicholas T.P., Iverson N.M., Boghossian A.A., Reuel N.F., Hilmer A.J., Sen F., Brew J.A., Strano M.S. 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials 13 (4): 400−408. DOI:
https://doi.org/10.1038/nmat38....
17.
Hamed S.M., Hagag E.S., Abd El-Raouf N. 2019. Green production of silver nanoparticles, evaluation of their nematicidal activity against Meloidogyne javanica and their impact on growth of faba bean. Beni-Suef University Journal of Basic and Applied Sciences 8: 9. DOI:
https://doi.org/10.1186/s43088....
18.
Hassan H.Z., Haliem A.S., Abd El-Hady E.A. 2002. Effect of pre and post treatments with ferty green foliar fertilizer on mutagenic potentiality of gokilaht insecicide. Egyptian Journal of Biotechnology 11: 282−304.
19.
Hatami M., Ghorbanpour M. 2013. Effect of nanosilver on physiological performance of pelargonium plants exposed to dark storage. Journal of Horticultural Research 21: 15−20. DOI:
https://doi.org/10.2478/johr-2....
20.
Hegaba A.S.A., Fayed M.T.B., Hamada M.M.A., Abdrabbo M.A.A. 2014. Productivity and irrigation requirements of faba-bean in North Delta of Egypt in relation to planting dates. Annals of Agricultural Sciences 59: 185−193. DOI:
https://doi.org/10.1016/j.aoas....
21.
Hussey R.S., Barker K.R. 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57: 1025−1028. DOI:
https://eurekamag.com/research....
22.
Hajipour M.J., Fromm K.M., Ashkarran A.A., de Aberasturi D.J., de Larramendi I.R., Rojo T., Serpooshan V., Parak W.J., Mahmoudi M. 2012. Antibacterial properties of nanoparticles. Trends in Biotechnology 30: 499−511. DOI:
https://doi.org/10.1016/j.tibt....
23.
Hayat Sh., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A. 2012. Role of proline under changing environments. Plant Signaling & Behavior 7: 1456−1466. DOI:
https://doi.org/10.4161/psb.21....
24.
Iqbal M., Raja N.I., Mashwani Z.U.R., Hussain M., Ejaz M., Yasmeen F. 2019. Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology, Transactions A: Science 43: 387−395. DOI:
https://doi.org10.1007/s40995-....
25.
Javed R., Zia M., Naz S., Aisid S.O., ul Ain N., Ao Q. 2020. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology 18: 172. DOI:
https://doi.org/10.1186/s12951....
26.
Jasim B., Roshmi T., Jyothis M., Radhakrishnan E.K. 2017. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenumgraecum L.). Saudi Pharmaceutical Journal 25 (3): 443−447. DOI:
https://doi.org/10.1016/j.jsps....
28.
Jurkow R., Pokluda R., Sękara A., Kalisz A. 2020. Impact of foliar application of some metal nanoparticles on antioxidant system in oakleaf lettuce seedlings. BMC Plant Biology 20: 290. DOI:
https://doi.org/10.1186/s12870....
29.
Karthick S., Chitrakala K. 2011. Ecotoxicological effect of Lecani cilium Lecanii (Ascomycota: Hypocereales) based silver nanoparticles on growth parameters of economically important plants. Journal of Biopesticides 4: 97−101.
30.
Khiew P., Chiu W., Tan T., Radiman S., Abd-Shukor R., Chia C.H. 2011. Capping effect of palm-oil based organometallic ligand towards the production of highly monodispersed nanostructured material. p. 189−219. In: “Palm Oil Nutr Uses Impacts”. Nova Science.
31.
Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C.Y., Kim Y.K., Lee Y.S., Jeong D.H., Cho M.H. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine 3: 95−101. DOI:
https://doi.org/10.1016/j.nano....
32.
Kumari M., Pandey S., Bhattacharya A., Mishra A., Nautiyal C.S. 2017. Protective role of biosynthesized silver nanoparticles against early blight disease in Solanum lycopersicum. Plant Physiology and Biochemistry 121: 216−225. DOI:
https://doi.org/10.1016/j.plap....
34.
Marklund S., Marklund G. 1974. Involvement of thesuperoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47: 469−474. DOI:
http://doi.org/10.1111/j.1432-....
35.
Mehta P.C.M., Srivastava R., Arora S., Sharma A.K. 2016. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6: 254. DOI:
https://doi.org/10.1007/s13205....
36.
Min J.S., Kim K.S., Kim S.W., Jung J.H., Lamsal K., Kim S.B., Jung M., Lee Y.S. 2009. Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. The Plant Pathology Journal 25: 376−380. DOI:
https://doi.org/10.5423/PPJ.20....
37.
Mohamed A.S.H., Qayyum M.F., Abdel-Hadi A.M., Rehman R.A., Ali S., Rizwan M. 2017. Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Archives of Agronomy and Soil Science 63: 1476−3567. DOI:
https://doi.org/10.1080/036503....
38.
Monreal J.A., Jimenez E.T., Remesal E., Morillo-Velarde R., Garcia-Maurino S., Echevarria C. 2007. Proline content of sugar beet storage roots: Response to water deficit and nitrogen fertilization at field conditions. Environmental and Experimental Botany 60: 257−267. DOI:
https://doi.org/10.1016/j.enve....
39.
Mukherjee S.P., Choudhuri M.A. 1983. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Plant Physiology 58: 166−170. DOI:
https://doi.org/10.1111/j.1399....
40.
Muller H.P., Gottschelk W. 1973. Quantitative and qualitative situation of Pisum sativum. p. 235−253. In: “Nuclear Techniques for Seed Protein Improvement”. International Atomic Energy Agency, Vienna, 430 pp.
41.
Musante C., White J.C. 2012. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environmental Toxicology 27 (9): 510−517. DOI:
http://doi.org/10.1002/tox.206....
42.
Narayanan K.B., Sakthivel N. 2010. Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science 156: 1−13. DOI:
https://doi.org/10.1016/j.cis.....
43.
Nazir K., Mukhtar T., Javed H. 2019. In vitro effectiveness of silver nanoparticles against root-knot nematode (Meloidogyne incognita). Pakistan Journal of Zoology 51: 2077−2083. DOI:
http://dx.doi.org/10.17582/jou....
44.
Osman S.A., Salama D.M., Abd El-Aziz M.E., Shaaban E.A., Abd Elwahed M.S. 2020. The influence of MoO3-NPs on agro-morphological criteria, genomic stability of DNA, biochemical assay, and production of common dry bean (Phaseolus vulgaris L.). Plant Physiology and Biochemistry 151: 77−87. DOI:
https://doi.org/10.1016/j.plap....
45.
Pirtarighat S., Ghannadnia M., Baghshahi S. 2019. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. Journal of Nanostructure in Chemistry 9: 1−9. DOI:
https://doi.org/10.1007/s40097....
46.
Prasad T., Elumalai E. 2011. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine 1: 439−442. DOI:
https://doi.org/10.1016/S2221-....
47.
Salama H.M.H. 2012. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology 3: 190−197. DOI:
http://www.interesjournals.org....
48.
Sharma P., Bhatt D., Zaidi M.G.H., Saradhi P.P., Khanna P.K., Arora S. 2012. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology 167: 2225−2233. DOI:
https://doi.org/10.1007/s12010....
49.
Sharon M., Choudhary A.K., Kumar R. 2010. Nanotechnology in agricultural diseases and food safety. The Journal of Phytology 2: 83−92.
50.
Singleton L.L., Mihail J.D., Rush C.M. 1993. Methods for research on soilborne phytopathogenic fungi 85 (1): 140–141. DOI:
http://doi.org/10.2307/3760494.
51.
Vannini C., Domingo G., Onelli E., Prinsi B., Marsoni M., Espen L., Bracale M. 2013. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 8: e6875. DOI:
https://doi.org/10.1371/journa....
52.
Wrather J.A., Anderson T.R., Arsyad D.M., Tan Y., Ploper L.D., Puglia A.P. 2011. Soyabean disease loss estimates for the top 10 soybean producing countries. Canadian Journal of Plant Pathology 23: 115−121. DOI:
https://doi.org/10.1094/PDIS.1....